About adding RHEL compute nodes to a cluster

In OpenShift Container Platform 4.11, you have the option of using Red Hat Enterprise Linux (RHEL) machines as compute machines in your cluster if you use a user-provisioned infrastructure installation on the x86_64 architecture. You must use Red Hat Enterprise Linux CoreOS (RHCOS) machines for the control plane machines in your cluster.

If you choose to use RHEL compute machines in your cluster, you are responsible for all operating system life cycle management and maintenance. You must perform system updates, apply patches, and complete all other required tasks.

  • Because removing OpenShift Container Platform from a machine in the cluster requires destroying the operating system, you must use dedicated hardware for any RHEL machines that you add to the cluster.

  • Swap memory is disabled on all RHEL machines that you add to your OpenShift Container Platform cluster. You cannot enable swap memory on these machines.

You must add any RHEL compute machines to the cluster after you initialize the control plane.

System requirements for RHEL compute nodes

The Red Hat Enterprise Linux (RHEL) compute machine hosts in your OpenShift Container Platform environment must meet the following minimum hardware specifications and system-level requirements:

  • You must have an active OpenShift Container Platform subscription on your Red Hat account. If you do not, contact your sales representative for more information.

  • Production environments must provide compute machines to support your expected workloads. As a cluster administrator, you must calculate the expected workload and add about 10% for overhead. For production environments, allocate enough resources so that a node host failure does not affect your maximum capacity.

  • Each system must meet the following hardware requirements:

    • Physical or virtual system, or an instance running on a public or private IaaS.

    • Base OS: RHEL 8.5 to 8.7 with "Minimal" installation option.

      Adding RHEL 7 compute machines to an OpenShift Container Platform cluster is not supported.

      If you have RHEL 7 compute machines that were previously supported in a past OpenShift Container Platform version, you cannot upgrade them to RHEL 8. You must deploy new RHEL 8 hosts, and the old RHEL 7 hosts should be removed. See the "Deleting nodes" section for more information.

      For the most recent list of major functionality that has been deprecated or removed within OpenShift Container Platform, refer to the Deprecated and removed features section of the OpenShift Container Platform release notes.

    • If you deployed OpenShift Container Platform in FIPS mode, you must enable FIPS on the RHEL machine before you boot it. See Installing a RHEL 8 system with FIPS mode enabled in the RHEL 8 documentation.

The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.

  • NetworkManager 1.0 or later.

  • 1 vCPU.

  • Minimum 8 GB RAM.

  • Minimum 15 GB hard disk space for the file system containing /var/.

  • Minimum 1 GB hard disk space for the file system containing /usr/local/bin/.

  • Minimum 1 GB hard disk space for the file system containing its temporary directory. The temporary system directory is determined according to the rules defined in the tempfile module in the Python standard library.

    • Each system must meet any additional requirements for your system provider. For example, if you installed your cluster on VMware vSphere, your disks must be configured according to its storage guidelines and the disk.enableUUID=true attribute must be set.

    • Each system must be able to access the cluster’s API endpoints by using DNS-resolvable hostnames. Any network security access control that is in place must allow system access to the cluster’s API service endpoints.

Additional resources

Certificate signing requests management

Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.

Preparing an image for your cloud

Amazon Machine Images (AMI) are required since various image formats cannot be used directly by AWS. You may use the AMIs that Red Hat has provided, or you can manually import your own images. The AMI must exist before the EC2 instance can be provisioned. You must list the AMI IDs so that the correct RHEL version needed for the compute machines is selected.

Listing latest available RHEL images on AWS

AMI IDs correspond to native boot images for AWS. Because an AMI must exist before the EC2 instance is provisioned, you will need to know the AMI ID before configuration. The AWS Command Line Interface (CLI) is used to list the available Red Hat Enterprise Linux (RHEL) image IDs.

  • You have installed the AWS CLI.

  • Use this command to list RHEL 8.4 Amazon Machine Images (AMI):

    $ aws ec2 describe-images --owners 309956199498 \ (1)
    --query 'sort_by(Images, &CreationDate)[*].[CreationDate,Name,ImageId]' \ (2)
    --filters "Name=name,Values=RHEL-8.4*" \ (3)
    --region us-east-1 \ (4)
    --output table (5)
    1 The --owners command option shows Red Hat images based on the account ID 309956199498.

    This account ID is required to display AMI IDs for images that are provided by Red Hat.

    2 The --query command option sets how the images are sorted with the parameters 'sort_by(Images, &CreationDate)[*].[CreationDate,Name,ImageId]'. In this case, the images are sorted by the creation date, and the table is structured to show the creation date, the name of the image, and the AMI IDs.
    3 The --filter command option sets which version of RHEL is shown. In this example, since the filter is set by "Name=name,Values=RHEL-8.4*", then RHEL 8.4 AMIs are shown.
    4 The --region command option sets where the region where an AMI is stored.
    5 The --output command option sets how the results are displayed.

When creating a RHEL compute machine for AWS, ensure that the AMI is RHEL 8.4 or 8.5.

Example output
|                                              DescribeImages                                              |
|  2021-03-18T14:23:11.000Z |  RHEL-8.4.0_HVM_BETA-20210309-x86_64-1-Hourly2-GP2  |  ami-07eeb4db5f7e5a8fb |
|  2021-03-18T14:38:28.000Z |  RHEL-8.4.0_HVM_BETA-20210309-arm64-1-Hourly2-GP2   |  ami-069d22ec49577d4bf |
|  2021-05-18T19:06:34.000Z |  RHEL-8.4.0_HVM-20210504-arm64-2-Hourly2-GP2        |  ami-01fc429821bf1f4b4 |
|  2021-05-18T20:09:47.000Z |  RHEL-8.4.0_HVM-20210504-x86_64-2-Hourly2-GP2       |  ami-0b0af3577fe5e3532 |
Additional resources

Preparing a RHEL compute node

Before you add a Red Hat Enterprise Linux (RHEL) machine to your OpenShift Container Platform cluster, you must register each host with Red Hat Subscription Manager (RHSM), attach an active OpenShift Container Platform subscription, and enable the required repositories.

  1. On each host, register with RHSM:

    # subscription-manager register --username=<user_name> --password=<password>
  2. Pull the latest subscription data from RHSM:

    # subscription-manager refresh
  3. List the available subscriptions:

    # subscription-manager list --available --matches '*OpenShift*'
  4. In the output for the previous command, find the pool ID for an OpenShift Container Platform subscription and attach it:

    # subscription-manager attach --pool=<pool_id>
  5. Disable all yum repositories:

    1. Disable all the enabled RHSM repositories:

      # subscription-manager repos --disable="*"
    2. List the remaining yum repositories and note their names under repo id, if any:

      # yum repolist
    3. Use yum-config-manager to disable the remaining yum repositories:

      # yum-config-manager --disable <repo_id>

      Alternatively, disable all repositories:

      # yum-config-manager --disable \*

      Note that this might take a few minutes if you have a large number of available repositories

  6. Enable only the repositories required by OpenShift Container Platform 4.11:

    # subscription-manager repos \
        --enable="rhel-8-for-x86_64-baseos-rpms" \
        --enable="rhel-8-for-x86_64-appstream-rpms" \
        --enable="rhocp-4.11-for-rhel-8-x86_64-rpms" \
  7. Stop and disable firewalld on the host:

    # systemctl disable --now firewalld.service

    You must not enable firewalld later. If you do, you cannot access OpenShift Container Platform logs on the worker.

Attaching the role permissions to RHEL instance in AWS

Using the Amazon IAM console in your browser, you may select the needed roles and assign them to a worker node.

  1. From the AWS IAM console, create your desired IAM role.

  2. Attach the IAM role to the desired worker node.

Additional resources

Tagging a RHEL worker node as owned or shared

A cluster uses the value of the kubernetes.io/cluster/<clusterid>,Value=(owned|shared) tag to determine the lifetime of the resources related to the AWS cluster.

  • The owned tag value should be added if the resource should be destroyed as part of destroying the cluster.

  • The shared tag value should be added if the resource continues to exist after the cluster has been destroyed. This tagging denotes that the cluster uses this resource, but there is a separate owner for the resource.

  • With RHEL compute machines, the RHEL worker instance must be tagged with kubernetes.io/cluster/<clusterid>=owned or kubernetes.io/cluster/<cluster-id>=shared.

Do not tag all existing security groups with the kubernetes.io/cluster/<name>,Value=<clusterid> tag, or the Elastic Load Balancing (ELB) will not be able to create a load balancer.

Adding more RHEL compute machines to your cluster

You can add more compute machines that use Red Hat Enterprise Linux (RHEL) as the operating system to an OpenShift Container Platform 4.11 cluster.

  • Your OpenShift Container Platform cluster already contains RHEL compute nodes.

  • The hosts file that you used to add the first RHEL compute machines to your cluster is on the machine that you use the run the playbook.

  • The machine that you run the playbook on must be able to access all of the RHEL hosts. You can use any method that your company allows, including a bastion with an SSH proxy or a VPN.

  • The kubeconfig file for the cluster and the installation program that you used to install the cluster are on the machine that you use the run the playbook.

  • You must prepare the RHEL hosts for installation.

  • Configure a user on the machine that you run the playbook on that has SSH access to all of the RHEL hosts.

  • If you use SSH key-based authentication, you must manage the key with an SSH agent.

  • Install the OpenShift CLI (oc) on the machine that you run the playbook on.

  1. Open the Ansible inventory file at /<path>/inventory/hosts that defines your compute machine hosts and required variables.

  2. Rename the [new_workers] section of the file to [workers].

  3. Add a [new_workers] section to the file and define the fully-qualified domain names for each new host. The file resembles the following example:


    In this example, the mycluster-rhel8-0.example.com and mycluster-rhel8-1.example.com machines are in the cluster and you add the mycluster-rhel8-2.example.com and mycluster-rhel8-3.example.com machines.

  4. Navigate to the Ansible playbook directory:

    $ cd /usr/share/ansible/openshift-ansible
  5. Run the scaleup playbook:

    $ ansible-playbook -i /<path>/inventory/hosts playbooks/scaleup.yml (1)
    1 For <path>, specify the path to the Ansible inventory file that you created.

Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.

  • You added machines to your cluster.

  1. Confirm that the cluster recognizes the machines:

    $ oc get nodes
    Example output
    master-0  Ready     master  63m  v1.24.0
    master-1  Ready     master  63m  v1.24.0
    master-2  Ready     master  64m  v1.24.0

    The output lists all of the machines that you created.

    The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.

  2. Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:

    $ oc get csr
    Example output
    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending

    In this example, two machines are joining the cluster. You might see more approved CSRs in the list.

  3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:

    Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.

    For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned in