×

Recovering etcd pods for hosted clusters

In hosted clusters, etcd pods run as part of a stateful set. The stateful set relies on persistent storage to store etcd data for each member. In a highly available control plane, the size of the stateful set is three pods, and each member has its own persistent volume claim.

Checking the status of a hosted cluster

To check the status of your hosted cluster, complete the following steps.

Procedure
  1. Enter the running etcd pod that you want to check by entering the following command:

    $ oc rsh -n <control_plane_namespace> -c etcd etcd-0
  2. Set up the etcdctl environment by entering the following commands:

    sh-4.4$ export ETCDCTL_API=3
    sh-4.4$ export ETCDCTL_CACERT=/etc/etcd/tls/etcd-ca/ca.crt
    sh-4.4$ export ETCDCTL_CERT=/etc/etcd/tls/client/etcd-client.crt
    sh-4.4$ export ETCDCTL_KEY=/etc/etcd/tls/client/etcd-client.key
    sh-4.4$ export ETCDCTL_ENDPOINTS=https://etcd-client:2379
  3. Print the endpoint status for each cluster member by entering the following command:

    sh-4.4$ etcdctl endpoint health --cluster -w table

Recovering an etcd member for a hosted cluster

An etcd member of a 3-node cluster might fail because of corrupted or missing data. To recover the etcd member, complete the following steps.

Procedure
  1. If you need to confirm that the etcd member is failing, enter the following command:

    $ oc get pods -l app=etcd -n <control_plane_namespace>

    The output resembles this example if the etcd member is failing:

    Example output
    NAME     READY   STATUS             RESTARTS     AGE
    etcd-0   2/2     Running            0            64m
    etcd-1   2/2     Running            0            45m
    etcd-2   1/2     CrashLoopBackOff   1 (5s ago)   64m
  2. Delete the persistent volume claim of the failing etcd member and the pod by entering the following command:

    $ oc delete pvc/data-etcd-2 pod/etcd-2 --wait=false
  3. When the pod restarts, verify that the etcd member is added back to the etcd cluster and is correctly functioning by entering the following command:

    $ oc get pods -l app=etcd -n $CONTROL_PLANE_NAMESPACE
    Example output
    NAME     READY   STATUS    RESTARTS   AGE
    etcd-0   2/2     Running   0          67m
    etcd-1   2/2     Running   0          48m
    etcd-2   2/2     Running   0          2m2s

Backing up and restoring etcd on a hosted cluster on AWS

If you use hosted control planes for OpenShift Container Platform, the process to back up and restore etcd is different from the usual etcd backup process.

The following procedures are specific to hosted control planes on AWS.

Hosted control planes on the AWS platform is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Taking a snapshot of etcd on a hosted cluster

As part of the process to back up etcd for a hosted cluster, you take a snapshot of etcd. After you take the snapshot, you can restore it, for example, as part of a disaster recovery operation.

This procedure requires API downtime.

Procedure
  1. Pause reconciliation of the hosted cluster by entering this command:

    $ oc patch -n clusters hostedclusters/${CLUSTER_NAME} -p '{"spec":{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge
  2. Stop all etcd-writer deployments by entering this command:

    $ oc scale deployment -n ${HOSTED_CLUSTER_NAMESPACE} --replicas=0 kube-apiserver openshift-apiserver openshift-oauth-apiserver
  3. Take an etcd snapshot by using the exec command in each etcd container:

    $ oc exec -it etcd-0 -n ${HOSTED_CLUSTER_NAMESPACE} -- env ETCDCTL_API=3 /usr/bin/etcdctl --cacert /etc/etcd/tls/client/etcd-client-ca.crt --cert /etc/etcd/tls/client/etcd-client.crt --key /etc/etcd/tls/client/etcd-client.key --endpoints=localhost:2379 snapshot save /var/lib/data/snapshot.db
    $ oc exec -it etcd-0 -n ${HOSTED_CLUSTER_NAMESPACE} -- env ETCDCTL_API=3 /usr/bin/etcdctl -w table snapshot status /var/lib/data/snapshot.db
  4. Copy the snapshot data to a location where you can retrieve it later, such as an S3 bucket, as shown in the following example.

    The following example uses signature version 2. If you are in a region that supports signature version 4, such as the us-east-2 region, use signature version 4. Otherwise, if you use signature version 2 to copy the snapshot to an S3 bucket, the upload fails and signature version 2 is deprecated.

    Example
    BUCKET_NAME=somebucket
    FILEPATH="/${BUCKET_NAME}/${CLUSTER_NAME}-snapshot.db"
    CONTENT_TYPE="application/x-compressed-tar"
    DATE_VALUE=`date -R`
    SIGNATURE_STRING="PUT\n\n${CONTENT_TYPE}\n${DATE_VALUE}\n${FILEPATH}"
    ACCESS_KEY=accesskey
    SECRET_KEY=secret
    SIGNATURE_HASH=`echo -en ${SIGNATURE_STRING} | openssl sha1 -hmac ${SECRET_KEY} -binary | base64`
    
    oc exec -it etcd-0 -n ${HOSTED_CLUSTER_NAMESPACE} -- curl -X PUT -T "/var/lib/data/snapshot.db" \
      -H "Host: ${BUCKET_NAME}.s3.amazonaws.com" \
      -H "Date: ${DATE_VALUE}" \
      -H "Content-Type: ${CONTENT_TYPE}" \
      -H "Authorization: AWS ${ACCESS_KEY}:${SIGNATURE_HASH}" \
      https://${BUCKET_NAME}.s3.amazonaws.com/${CLUSTER_NAME}-snapshot.db
  5. If you want to be able to restore the snapshot on a new cluster later, save the encryption secret that the hosted cluster references, as shown in this example:

    Example
    oc get hostedcluster $CLUSTER_NAME -o=jsonpath='{.spec.secretEncryption.aescbc}'
    {"activeKey":{"name":"CLUSTER_NAME-etcd-encryption-key"}}
    
    # Save this secret, or the key it contains so the etcd data can later be decrypted
    oc get secret ${CLUSTER_NAME}-etcd-encryption-key -o=jsonpath='{.data.key}'
Next steps

Restore the etcd snapshot.

Restoring an etcd snapshot on a hosted cluster

If you have a snapshot of etcd from your hosted cluster, you can restore it. Currently, you can restore an etcd snapshot only during cluster creation.

To restore an etcd snapshot, you modify the output from the create cluster --render command and define a restoreSnapshotURL value in the etcd section of the HostedCluster specification.

Prerequisites

You took an etcd snapshot on a hosted cluster.

Procedure
  1. On the aws command-line interface (CLI), create a pre-signed URL so that you can download your etcd snapshot from S3 without passing credentials to the etcd deployment:

    ETCD_SNAPSHOT=${ETCD_SNAPSHOT:-"s3://${BUCKET_NAME}/${CLUSTER_NAME}-snapshot.db"}
    ETCD_SNAPSHOT_URL=$(aws s3 presign ${ETCD_SNAPSHOT})
  2. Modify the HostedCluster specification to refer to the URL:

    spec:
      etcd:
        managed:
          storage:
            persistentVolume:
              size: 4Gi
            type: PersistentVolume
            restoreSnapshotURL:
            - "${ETCD_SNAPSHOT_URL}"
        managementType: Managed
  3. Ensure that the secret that you referenced from the spec.secretEncryption.aescbc value contains the same AES key that you saved in the previous steps.

Backing up and restoring etcd on a hosted cluster in an on-premise environment

By backing up and restoring etcd on a hosted cluster, you can fix failures, such as corrupted or missing data in an etcd member of a three node cluster. If multiple members of the etcd cluster encounter data loss or have a CrashLoopBackOff status, this approach helps prevent an etcd quorum loss.

This procedure requires API downtime.

Prerequisites
  • The oc and jq binaries have been installed.

Procedure
  1. First, set up your environment variables and scale down the API servers:

    1. Set up environment variables for your hosted cluster by entering the following commands, replacing values as necessary:

      $ CLUSTER_NAME=my-cluster
      $ HOSTED_CLUSTER_NAMESPACE=clusters
      $ CONTROL_PLANE_NAMESPACE="${HOSTED_CLUSTER_NAMESPACE}-${CLUSTER_NAME}"
    2. Pause reconciliation of the hosted cluster by entering the following command, replacing values as necessary:

      $ oc patch -n ${HOSTED_CLUSTER_NAMESPACE} hostedclusters/${CLUSTER_NAME} -p '{"spec":{"pausedUntil":"true"}}' --type=merge
    3. Scale down the API servers by entering the following commands:

      1. Scale down the kube-apiserver:

        $ oc scale -n ${CONTROL_PLANE_NAMESPACE} deployment/kube-apiserver --replicas=0
      2. Scale down the openshift-apiserver:

        $ oc scale -n ${CONTROL_PLANE_NAMESPACE} deployment/openshift-apiserver --replicas=0
      3. Scale down the openshift-oauth-apiserver:

        $ oc scale -n ${CONTROL_PLANE_NAMESPACE} deployment/openshift-oauth-apiserver --replicas=0
  2. Next, take a snapshot of etcd by using one of the following methods:

    1. Use a previously backed-up snapshot of etcd.

    2. If you have an available etcd pod, take a snapshot from the active etcd pod by completing the following steps:

      1. List etcd pods by entering the following command:

        $ oc get -n ${CONTROL_PLANE_NAMESPACE} pods -l app=etcd
      2. Take a snapshot of the pod database and save it locally to your machine by entering the following commands:

        $ ETCD_POD=etcd-0
        $ oc exec -n ${CONTROL_PLANE_NAMESPACE} -c etcd -t ${ETCD_POD} -- env ETCDCTL_API=3 /usr/bin/etcdctl \
        --cacert /etc/etcd/tls/etcd-ca/ca.crt \
        --cert /etc/etcd/tls/client/etcd-client.crt \
        --key /etc/etcd/tls/client/etcd-client.key \
        --endpoints=https://localhost:2379 \
        snapshot save /var/lib/snapshot.db
      3. Verify that the snapshot is successful by entering the following command:

        $ oc exec -n ${CONTROL_PLANE_NAMESPACE} -c etcd -t ${ETCD_POD} -- env ETCDCTL_API=3 /usr/bin/etcdctl -w table snapshot status /var/lib/snapshot.db
    3. Make a local copy of the snapshot by entering the following command:

      $ oc cp -c etcd ${CONTROL_PLANE_NAMESPACE}/${ETCD_POD}:/var/lib/snapshot.db /tmp/etcd.snapshot.db
      1. Make a copy of the snapshot database from etcd persistent storage:

        1. List etcd pods by entering the following command:

          $ oc get -n ${CONTROL_PLANE_NAMESPACE} pods -l app=etcd
        2. Find a pod that is running and set its name as the value of ETCD_POD: ETCD_POD=etcd-0, and then copy its snapshot database by entering the following command:

          $ oc cp -c etcd ${CONTROL_PLANE_NAMESPACE}/${ETCD_POD}:/var/lib/data/member/snap/db /tmp/etcd.snapshot.db
  3. Next, scale down the etcd statefulset by entering the following command:

    $ oc scale -n ${CONTROL_PLANE_NAMESPACE} statefulset/etcd --replicas=0
    1. Delete volumes for second and third members by entering the following command:

      $ oc delete -n ${CONTROL_PLANE_NAMESPACE} pvc/data-etcd-1 pvc/data-etcd-2
    2. Create a pod to access the first etcd member’s data:

      1. Get the etcd image by entering the following command:

        $ ETCD_IMAGE=$(oc get -n ${CONTROL_PLANE_NAMESPACE} statefulset/etcd -o jsonpath='{ .spec.template.spec.containers[0].image }')
      2. Create a pod that allows access to etcd data:

        $ cat << EOF | oc apply -n ${CONTROL_PLANE_NAMESPACE} -f -
        apiVersion: apps/v1
        kind: Deployment
        metadata:
          name: etcd-data
        spec:
          replicas: 1
          selector:
            matchLabels:
              app: etcd-data
          template:
            metadata:
              labels:
                app: etcd-data
            spec:
              containers:
              - name: access
                image: $ETCD_IMAGE
                volumeMounts:
                - name: data
                  mountPath: /var/lib
                command:
                - /usr/bin/bash
                args:
                - -c
                - |-
                  while true; do
                    sleep 1000
                  done
              volumes:
              - name: data
                persistentVolumeClaim:
                  claimName: data-etcd-0
        EOF
      3. Check the status of the etcd-data pod and wait for it to be running by entering the following command:

        $ oc get -n ${CONTROL_PLANE_NAMESPACE} pods -l app=etcd-data
      4. Get the name of the etcd-data pod by entering the following command:

        $ DATA_POD=$(oc get -n ${CONTROL_PLANE_NAMESPACE} pods --no-headers -l app=etcd-data -o name | cut -d/ -f2)
    3. Copy an etcd snapshot into the pod by entering the following command:

      $ oc cp /tmp/etcd.snapshot.db ${CONTROL_PLANE_NAMESPACE}/${DATA_POD}:/var/lib/restored.snap.db
    4. Remove old data from the etcd-data pod by entering the following commands:

      $ oc exec -n ${CONTROL_PLANE_NAMESPACE} ${DATA_POD} -- rm -rf /var/lib/data
      $ oc exec -n ${CONTROL_PLANE_NAMESPACE} ${DATA_POD} -- mkdir -p /var/lib/data
    5. Restore the etcd snapshot by entering the following command:

      $ oc exec -n ${CONTROL_PLANE_NAMESPACE} ${DATA_POD} -- etcdutl snapshot restore /var/lib/restored.snap.db \
           --data-dir=/var/lib/data --skip-hash-check \
           --name etcd-0 \
           --initial-cluster-token=etcd-cluster \
           --initial-cluster etcd-0=https://etcd-0.etcd-discovery.${CONTROL_PLANE_NAMESPACE}.svc:2380,etcd-1=https://etcd-1.etcd-discovery.${CONTROL_PLANE_NAMESPACE}.svc:2380,etcd-2=https://etcd-2.etcd-discovery.${CONTROL_PLANE_NAMESPACE}.svc:2380 \
           --initial-advertise-peer-urls https://etcd-0.etcd-discovery.${CONTROL_PLANE_NAMESPACE}.svc:2380
    6. Remove the temporary etcd snapshot from the pod by entering the following command:

      $ oc exec -n ${CONTROL_PLANE_NAMESPACE} ${DATA_POD} -- rm /var/lib/restored.snap.db
    7. Delete data access deployment by entering the following command:

      $ oc delete -n ${CONTROL_PLANE_NAMESPACE} deployment/etcd-data
    8. Scale up the etcd cluster by entering the following command:

      $ oc scale -n ${CONTROL_PLANE_NAMESPACE} statefulset/etcd --replicas=3
    9. Wait for the etcd member pods to return and report as available by entering the following command:

      $ oc get -n ${CONTROL_PLANE_NAMESPACE} pods -l app=etcd -w
    10. Scale up all etcd-writer deployments by entering the following command:

      $ oc scale deployment -n ${CONTROL_PLANE_NAMESPACE} --replicas=3 kube-apiserver openshift-apiserver openshift-oauth-apiserver
  4. Restore reconciliation of the hosted cluster by entering the following command:

    $ oc patch -n ${CLUSTER_NAMESPACE} hostedclusters/${CLUSTER_NAME} -p '{"spec":{"pausedUntil":""}}' --type=merge

Disaster recovery for a hosted cluster within an AWS region

In a situation where you need disaster recovery (DR) for a hosted cluster, you can recover a hosted cluster to the same region within AWS. For example, you need DR when the upgrade of a management cluster fails and the hosted cluster is in a read-only state.

Hosted control planes is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

The DR process involves three main steps:

  1. Backing up the hosted cluster on the source management cluster

  2. Restoring the hosted cluster on a destination management cluster

  3. Deleting the hosted cluster from the source management cluster

Your workloads remain running during the process. The Cluster API might be unavailable for a period, but that will not affect the services that are running on the worker nodes.

Both the source management cluster and the destination management cluster must have the --external-dns flags to maintain the API server URL, as shown in this example:

Example: External DNS flags
--external-dns-provider=aws \
--external-dns-credentials=<AWS Credentials location> \
--external-dns-domain-filter=<DNS Base Domain>

That way, the server URL ends with https://api-sample-hosted.sample-hosted.aws.openshift.com.

If you do not include the --external-dns flags to maintain the API server URL, the hosted cluster cannot be migrated.

Example environment and context

Consider an scenario where you have three clusters to restore. Two are management clusters, and one is a hosted cluster. You can restore either the control plane only or the control plane and the nodes. Before you begin, you need the following information:

  • Source MGMT Namespace: The source management namespace

  • Source MGMT ClusterName: The source management cluster name

  • Source MGMT Kubeconfig: The source management kubeconfig file

  • Destination MGMT Kubeconfig: The destination management kubeconfig file

  • HC Kubeconfig: The hosted cluster kubeconfig file

  • SSH key file: The SSH public key

  • Pull secret: The pull secret file to access the release images

  • AWS credentials

  • AWS region

  • Base domain: The DNS base domain to use as an external DNS

  • S3 bucket name: The bucket in the AWS region where you plan to upload the etcd backup

This information is shown in the following example environment variables.

Example environment variables
SSH_KEY_FILE=${HOME}/.ssh/id_rsa.pub
BASE_PATH=${HOME}/hypershift
BASE_DOMAIN="aws.sample.com"
PULL_SECRET_FILE="${HOME}/pull_secret.json"
AWS_CREDS="${HOME}/.aws/credentials"
AWS_ZONE_ID="Z02718293M33QHDEQBROL"

CONTROL_PLANE_AVAILABILITY_POLICY=SingleReplica
HYPERSHIFT_PATH=${BASE_PATH}/src/hypershift
HYPERSHIFT_CLI=${HYPERSHIFT_PATH}/bin/hypershift
HYPERSHIFT_IMAGE=${HYPERSHIFT_IMAGE:-"quay.io/${USER}/hypershift:latest"}
NODE_POOL_REPLICAS=${NODE_POOL_REPLICAS:-2}

# MGMT Context
MGMT_REGION=us-west-1
MGMT_CLUSTER_NAME="${USER}-dev"
MGMT_CLUSTER_NS=${USER}
MGMT_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${MGMT_CLUSTER_NS}-${MGMT_CLUSTER_NAME}"
MGMT_KUBECONFIG="${MGMT_CLUSTER_DIR}/kubeconfig"

# MGMT2 Context
MGMT2_CLUSTER_NAME="${USER}-dest"
MGMT2_CLUSTER_NS=${USER}
MGMT2_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${MGMT2_CLUSTER_NS}-${MGMT2_CLUSTER_NAME}"
MGMT2_KUBECONFIG="${MGMT2_CLUSTER_DIR}/kubeconfig"

# Hosted Cluster Context
HC_CLUSTER_NS=clusters
HC_REGION=us-west-1
HC_CLUSTER_NAME="${USER}-hosted"
HC_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}"
HC_KUBECONFIG="${HC_CLUSTER_DIR}/kubeconfig"
BACKUP_DIR=${HC_CLUSTER_DIR}/backup

BUCKET_NAME="${USER}-hosted-${MGMT_REGION}"

# DNS
AWS_ZONE_ID="Z07342811SH9AA102K1AC"
EXTERNAL_DNS_DOMAIN="hc.jpdv.aws.kerbeross.com"

Overview of the backup and restore process

The backup and restore process works as follows:

  1. On management cluster 1, which you can think of as the source management cluster, the control plane and workers interact by using the external DNS API. The external DNS API is accessible, and a load balancer sits between the management clusters.

    Diagram that shows the workers accessing the external DNS API and the external DNS API pointing to the control plane through a load balancer
  2. You take a snapshot of the hosted cluster, which includes etcd, the control plane, and the worker nodes. During this process, the worker nodes continue to try to access the external DNS API even if it is not accessible, the workloads are running, the control plane is saved in a local manifest file, and etcd is backed up to an S3 bucket. The data plane is active and the control plane is paused.

    298 OpenShift Backup Restore 0123 01
  3. On management cluster 2, which you can think of as the destination management cluster, you restore etcd from the S3 bucket and restore the control plane from the local manifest file. During this process, the external DNS API is stopped, the hosted cluster API becomes inaccessible, and any workers that use the API are unable to update their manifest files, but the workloads are still running.

    298 OpenShift Backup Restore 0123 02
  4. The external DNS API is accessible again, and the worker nodes use it to move to management cluster 2. The external DNS API can access the load balancer that points to the control plane.

    298 OpenShift Backup Restore 0123 03
  5. On management cluster 2, the control plane and worker nodes interact by using the external DNS API. The resources are deleted from management cluster 1, except for the S3 backup of etcd. If you try to set up the hosted cluster again on mangagement cluster 1, it will not work.

    298 OpenShift Backup Restore 0123 04

You can manually back up and restore your hosted cluster, or you can run a script to complete the process. For more information about the script, see "Running a script to back up and restore a hosted cluster".

Backing up a hosted cluster

To recover your hosted cluster in your target management cluster, you first need to back up all of the relevant data.

Procedure
  1. Create a configmap file to declare the source management cluster by entering this command:

    $ oc create configmap mgmt-parent-cluster -n default --from-literal=from=${MGMT_CLUSTER_NAME}
  2. Shut down the reconciliation in the hosted cluster and in the node pools by entering these commands:

    PAUSED_UNTIL="true"
    oc patch -n ${HC_CLUSTER_NS} hostedclusters/${HC_CLUSTER_NAME} -p '{"spec":{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge
    oc scale deployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --replicas=0 kube-apiserver openshift-apiserver openshift-oauth-apiserver control-plane-operator
    PAUSED_UNTIL="true"
    oc patch -n ${HC_CLUSTER_NS} hostedclusters/${HC_CLUSTER_NAME} -p '{"spec":{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge
    oc patch -n ${HC_CLUSTER_NS} nodepools/${NODEPOOLS} -p '{"spec":{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge
    oc scale deployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --replicas=0 kube-apiserver openshift-apiserver openshift-oauth-apiserver control-plane-operator
  3. Back up etcd and upload the data to an S3 bucket by running this bash script:

    Wrap this script in a function and call it from the main function.

    # ETCD Backup
    ETCD_PODS="etcd-0"
    if [ "${CONTROL_PLANE_AVAILABILITY_POLICY}" = "HighlyAvailable" ]; then
      ETCD_PODS="etcd-0 etcd-1 etcd-2"
    fi
    
    for POD in ${ETCD_PODS}; do
      # Create an etcd snapshot
      oc exec -it ${POD} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -- env ETCDCTL_API=3 /usr/bin/etcdctl --cacert /etc/etcd/tls/client/etcd-client-ca.crt --cert /etc/etcd/tls/client/etcd-client.crt --key /etc/etcd/tls/client/etcd-client.key --endpoints=localhost:2379 snapshot save /var/lib/data/snapshot.db
      oc exec -it ${POD} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -- env ETCDCTL_API=3 /usr/bin/etcdctl -w table snapshot status /var/lib/data/snapshot.db
    
      FILEPATH="/${BUCKET_NAME}/${HC_CLUSTER_NAME}-${POD}-snapshot.db"
      CONTENT_TYPE="application/x-compressed-tar"
      DATE_VALUE=`date -R`
      SIGNATURE_STRING="PUT\n\n${CONTENT_TYPE}\n${DATE_VALUE}\n${FILEPATH}"
    
      set +x
      ACCESS_KEY=$(grep aws_access_key_id ${AWS_CREDS} | head -n1 | cut -d= -f2 | sed "s/ //g")
      SECRET_KEY=$(grep aws_secret_access_key ${AWS_CREDS} | head -n1 | cut -d= -f2 | sed "s/ //g")
      SIGNATURE_HASH=$(echo -en ${SIGNATURE_STRING} | openssl sha1 -hmac "${SECRET_KEY}" -binary | base64)
      set -x
    
      # FIXME: this is pushing to the OIDC bucket
      oc exec -it etcd-0 -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -- curl -X PUT -T "/var/lib/data/snapshot.db" \
        -H "Host: ${BUCKET_NAME}.s3.amazonaws.com" \
        -H "Date: ${DATE_VALUE}" \
        -H "Content-Type: ${CONTENT_TYPE}" \
        -H "Authorization: AWS ${ACCESS_KEY}:${SIGNATURE_HASH}" \
        https://${BUCKET_NAME}.s3.amazonaws.com/${HC_CLUSTER_NAME}-${POD}-snapshot.db
    done

    For more information about backing up etcd, see "Backing up and restoring etcd on a hosted cluster".

  4. Back up Kubernetes and OpenShift Container Platform objects by entering the following commands. You need to back up the following objects:

    • HostedCluster and NodePool objects from the HostedCluster namespace

    • HostedCluster secrets from the HostedCluster namespace

    • HostedControlPlane from the Hosted Control Plane namespace

    • Cluster from the Hosted Control Plane namespace

    • AWSCluster, AWSMachineTemplate, and AWSMachine from the Hosted Control Plane namespace

    • MachineDeployments, MachineSets, and Machines from the Hosted Control Plane namespace

    • ControlPlane secrets from the Hosted Control Plane namespace

      mkdir -p ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS} ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
      chmod 700 ${BACKUP_DIR}/namespaces/
      
      # HostedCluster
      echo "Backing Up HostedCluster Objects:"
      oc get hc ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS} -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-${HC_CLUSTER_NAME}.yaml
      echo "--> HostedCluster"
      sed -i '' -e '/^status:$/,$d' ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-${HC_CLUSTER_NAME}.yaml
      
      # NodePool
      oc get np ${NODEPOOLS} -n ${HC_CLUSTER_NS} -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/np-${NODEPOOLS}.yaml
      echo "--> NodePool"
      sed -i '' -e '/^status:$/,$ d' ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/np-${NODEPOOLS}.yaml
      
      # Secrets in the HC Namespace
      echo "--> HostedCluster Secrets:"
      for s in $(oc get secret -n ${HC_CLUSTER_NS} | grep "^${HC_CLUSTER_NAME}" | awk '{print $1}'); do
          oc get secret -n ${HC_CLUSTER_NS} $s -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/secret-${s}.yaml
      done
      
      # Secrets in the HC Control Plane Namespace
      echo "--> HostedCluster ControlPlane Secrets:"
      for s in $(oc get secret -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} | egrep -v "docker|service-account-token|oauth-openshift|NAME|token-${HC_CLUSTER_NAME}" | awk '{print $1}'); do
          oc get secret -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} $s -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/secret-${s}.yaml
      done
      
      # Hosted Control Plane
      echo "--> HostedControlPlane:"
      oc get hcp ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/hcp-${HC_CLUSTER_NAME}.yaml
      
      # Cluster
      echo "--> Cluster:"
      CL_NAME=$(oc get hcp ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o jsonpath={.metadata.labels.\*} | grep ${HC_CLUSTER_NAME})
      oc get cluster ${CL_NAME} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/cl-${HC_CLUSTER_NAME}.yaml
      
      # AWS Cluster
      echo "--> AWS Cluster:"
      oc get awscluster ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awscl-${HC_CLUSTER_NAME}.yaml
      
      # AWS MachineTemplate
      echo "--> AWS Machine Template:"
      oc get awsmachinetemplate ${NODEPOOLS} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awsmt-${HC_CLUSTER_NAME}.yaml
      
      # AWS Machines
      echo "--> AWS Machine:"
      CL_NAME=$(oc get hcp ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o jsonpath={.metadata.labels.\*} | grep ${HC_CLUSTER_NAME})
      for s in $(oc get awsmachines -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --no-headers | grep ${CL_NAME} | cut -f1 -d\ ); do
          oc get -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} awsmachines $s -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awsm-${s}.yaml
      done
      
      # MachineDeployments
      echo "--> HostedCluster MachineDeployments:"
      for s in $(oc get machinedeployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o name); do
          mdp_name=$(echo ${s} | cut -f 2 -d /)
          oc get -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} $s -o yaml > ${BACKUP_DIR}