Disabling ownership via cluster version overrides prevents upgrades. Please remove overrides before continuing.
The OpenShift Container Platform installation program provides only a low number of configuration options before installation. Configuring most OpenShift Container Platform framework components, including the cluster monitoring stack, happens after the installation.
This section explains what configuration is supported, shows how to configure the monitoring stack, and demonstrates several common configuration scenarios.
Not all configuration parameters for the monitoring stack are exposed. Only the parameters and fields listed in the Config map reference for the Cluster Monitoring Operator are supported for configuration. |
The monitoring stack imposes additional resource requirements. Consult the computing resources recommendations in Scaling the Cluster Monitoring Operator and verify that you have sufficient resources.
Not all configuration options for the monitoring stack are exposed. The only supported way of configuring OpenShift Container Platform monitoring is by configuring the Cluster Monitoring Operator (CMO) using the options described in the Config map reference for the Cluster Monitoring Operator. Do not use other configurations, as they are unsupported.
Configuration paradigms might change across Prometheus releases, and such cases can only be handled gracefully if all configuration possibilities are controlled. If you use configurations other than those described in the Config map reference for the Cluster Monitoring Operator, your changes will disappear because the CMO automatically reconciles any differences and resets any unsupported changes back to the originally defined state by default and by design.
Backward compatibility for metrics, recording rules, or alerting rules is not guaranteed. |
The following modifications are explicitly not supported:
Creating additional ServiceMonitor
, PodMonitor
, and PrometheusRule
objects in the openshift-*
and kube-*
projects.
Modifying any resources or objects deployed in the openshift-monitoring
or openshift-user-workload-monitoring
projects. The resources created by the OpenShift Container Platform monitoring stack are not meant to be used by any other resources, as there are no guarantees about their backward compatibility.
The Alertmanager configuration is deployed as the |
Modifying resources of the stack. The OpenShift Container Platform monitoring stack ensures its resources are always in the state it expects them to be. If they are modified, the stack will reset them.
Deploying user-defined workloads to openshift-*
, and kube-*
projects. These projects are reserved for Red Hat provided components and they should not be used for user-defined workloads.
Enabling symptom based monitoring by using the Probe
custom resource definition (CRD) in Prometheus Operator.
Manually deploying monitoring resources into namespaces that have the openshift.io/cluster-monitoring: "true"
label.
Adding the openshift.io/cluster-monitoring: "true"
label to namespaces. This label is reserved only for the namespaces with core OpenShift Container Platform components and Red Hat certified components.
Installing custom Prometheus instances on OpenShift Container Platform. A custom instance is a Prometheus custom resource (CR) managed by the Prometheus Operator.
Monitoring Operators ensure that OpenShift Container Platform monitoring resources function as designed and tested. If Cluster Version Operator (CVO) control of an Operator is overridden, the Operator does not respond to configuration changes, reconcile the intended state of cluster objects, or receive updates.
While overriding CVO control for an Operator can be helpful during debugging, this is unsupported and the cluster administrator assumes full control of the individual component configurations and upgrades.
The spec.overrides
parameter can be added to the configuration for the CVO to allow administrators to provide a list of overrides to the behavior of the CVO for a component. Setting the spec.overrides[].unmanaged
parameter to true
for a component blocks cluster upgrades and alerts the administrator after a CVO override has been set:
Disabling ownership via cluster version overrides prevents upgrades. Please remove overrides before continuing.
Setting a CVO override puts the entire cluster in an unsupported state and prevents the monitoring stack from being reconciled to its intended state. This impacts the reliability features built into Operators and prevents updates from being received. Reported issues must be reproduced after removing any overrides for support to proceed. |
The following matrix contains information about versions of monitoring components for OpenShift Container Platform 4.12 and later releases:
OpenShift Container Platform | Prometheus Operator | Prometheus | Prometheus Adapter | Metrics Server (Technology Preview) | Alertmanager | kube-state-metrics agent | monitoring-plugin | node-exporter agent | Thanos |
---|---|---|---|---|---|---|---|---|---|
4.15 |
0.70.0 |
2.48.0 |
0.11.2 |
0.6.4 |
0.26.0 |
2.10.1 |
1.0.0 |
1.7.0 |
0.32.5 |
4.14 |
0.67.1 |
2.46.0 |
0.10.0 |
N/A |
0.25.0 |
2.9.2 |
1.0.0 |
1.6.1 |
0.30.2 |
4.13 |
0.63.0 |
2.42.0 |
0.10.0 |
N/A |
0.25.0 |
2.8.1 |
N/A |
1.5.0 |
0.30.2 |
4.12 |
0.60.1 |
2.39.1 |
0.10.0 |
N/A |
0.24.0 |
2.6.0 |
N/A |
1.4.0 |
0.28.1 |
The openshift-state-metrics agent and Telemeter Client are OpenShift-specific components. Therefore, their versions correspond with the versions of OpenShift Container Platform. |
You can configure the monitoring stack by creating and updating monitoring config maps. These config maps configure the Cluster Monitoring Operator (CMO), which in turn configures the components of the monitoring stack.
You can configure the core OpenShift Container Platform monitoring components by creating the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project. The Cluster Monitoring Operator (CMO) then configures the core components of the monitoring stack.
You have access to the cluster as a user with the cluster-admin
cluster role.
You have installed the OpenShift CLI (oc
).
Check whether the cluster-monitoring-config
ConfigMap
object exists:
$ oc -n openshift-monitoring get configmap cluster-monitoring-config
If the ConfigMap
object does not exist:
Create the following YAML manifest. In this example the file is called cluster-monitoring-config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
Apply the configuration to create the ConfigMap
object:
$ oc apply -f cluster-monitoring-config.yaml
You can configure the user workload monitoring components with the user-workload-monitoring-config
ConfigMap
object in the openshift-user-workload-monitoring
project. The Cluster Monitoring Operator (CMO) then configures the components that monitor user-defined projects.
|
You have access to the cluster as a user with the cluster-admin
cluster role.
You have installed the OpenShift CLI (oc
).
Check whether the user-workload-monitoring-config
ConfigMap
object exists:
$ oc -n openshift-user-workload-monitoring get configmap user-workload-monitoring-config
If the user-workload-monitoring-config
ConfigMap
object does not exist:
Create the following YAML manifest. In this example the file is called user-workload-monitoring-config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
Apply the configuration to create the ConfigMap
object:
$ oc apply -f user-workload-monitoring-config.yaml
Configurations applied to the |
As a cluster administrator, you can monitor all core OpenShift Container Platform and user-defined projects.
You can also grant developers and other users different permissions for core platform monitoring. You can grant the permissions by assigning one of the following monitoring roles or cluster roles:
Name | Description | Project |
---|---|---|
|
Users with this role have the ability to access Thanos Querier API endpoints. Additionally, it grants access to the core platform Prometheus API and user-defined Thanos Ruler API endpoints. |
|
|
Users with this role can manage |
|
|
Users with this role can manage the Alertmanager API for core platform monitoring. They can also manage alert silences in the Administrator perspective of the OpenShift Container Platform web console. |
|
|
Users with this role can monitor the Alertmanager API for core platform monitoring. They can also view alert silences in the Administrator perspective of the OpenShift Container Platform web console. |
|
|
Users with this cluster role have the same access rights as |
Must be bound with |
In OpenShift Container Platform 4.15, you can configure the monitoring stack using the cluster-monitoring-config
or user-workload-monitoring-config
ConfigMap
objects. Config maps configure the Cluster Monitoring Operator (CMO), which in turn configures the components of the stack.
If you are configuring core OpenShift Container Platform monitoring components:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
ConfigMap
object.
If you are configuring components that monitor user-defined projects:
You have access to the cluster as a user with the cluster-admin
cluster role, or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
Edit the ConfigMap
object.
To configure core OpenShift Container Platform monitoring components:
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add your configuration under data/config.yaml
as a key-value pair <component_name>: <component_configuration>
:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
<component>:
<configuration_for_the_component>
Substitute <component>
and <configuration_for_the_component>
accordingly.
The following example ConfigMap
object configures a persistent volume claim (PVC) for Prometheus. This relates to the Prometheus instance that monitors core OpenShift Container Platform components only:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s: (1)
volumeClaimTemplate:
spec:
storageClassName: fast
volumeMode: Filesystem
resources:
requests:
storage: 40Gi
1 | Defines the Prometheus component and the subsequent lines define its configuration. |
To configure components that monitor user-defined projects:
Edit the user-workload-monitoring-config
ConfigMap
object in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Add your configuration under data/config.yaml
as a key-value pair <component_name>: <component_configuration>
:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
<component>:
<configuration_for_the_component>
Substitute <component>
and <configuration_for_the_component>
accordingly.
The following example ConfigMap
object configures a data retention period and minimum container resource requests for Prometheus. This relates to the Prometheus instance that monitors user-defined projects only:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus: (1)
retention: 24h (2)
resources:
requests:
cpu: 200m (3)
memory: 2Gi (4)
1 | Defines the Prometheus component and the subsequent lines define its configuration. |
2 | Configures a twenty-four hour data retention period for the Prometheus instance that monitors user-defined projects. |
3 | Defines a minimum resource request of 200 millicores for the Prometheus container. |
4 | Defines a minimum pod resource request of 2 GiB of memory for the Prometheus container. |
The Prometheus config map component is called |
Save the file to apply the changes to the ConfigMap
object.
Different configuration changes to the
Each procedure that requires a change in the config map includes its expected outcome. |
Configuration reference for the cluster-monitoring-config
config map
Configuration reference for the user-workload-monitoring-config
config map
See Preparing to configure the monitoring stack for steps to create monitoring config maps
This table shows the monitoring components you can configure and the keys used to specify the components in the
cluster-monitoring-config
and
user-workload-monitoring-config
ConfigMap
objects.
Component | cluster-monitoring-config config map key | user-workload-monitoring-config config map key |
---|---|---|
Prometheus Operator |
|
|
Prometheus |
|
|
Alertmanager |
|
|
kube-state-metrics |
|
|
monitoring-plugin |
|
|
openshift-state-metrics |
|
|
Telemeter Client |
|
|
Prometheus Adapter |
|
|
Thanos Querier |
|
|
Thanos Ruler |
|
The Prometheus key is called |
By using the nodeSelector
constraint with labeled nodes, you can move any of the monitoring stack components to specific nodes.
By doing so, you can control the placement and distribution of the monitoring components across a cluster.
By controlling placement and distribution of monitoring components, you can optimize system resource use, improve performance, and segregate workloads based on specific requirements or policies.
If you move monitoring components by using node selector constraints, be aware that other constraints to control pod scheduling might exist for a cluster:
Topology spread constraints might be in place to control pod placement.
Hard anti-affinity rules are in place for Prometheus, Thanos Querier, Alertmanager, and other monitoring components to ensure that multiple pods for these components are always spread across different nodes and are therefore always highly available.
When scheduling pods onto nodes, the pod scheduler tries to satisfy all existing constraints when determining pod placement. That is, all constraints compound when the pod scheduler determines which pods will be placed on which nodes.
Therefore, if you configure a node selector constraint but existing constraints cannot all be satisfied, the pod scheduler cannot match all constraints and will not schedule a pod for placement onto a node.
To maintain resilience and high availability for monitoring components, ensure that enough nodes are available and match all constraints when you configure a node selector constraint to move a component.
To specify the nodes in your cluster on which monitoring stack components will run, configure the nodeSelector
constraint in the component’s ConfigMap
object to match labels assigned to the nodes.
You cannot add a node selector constraint directly to an existing scheduled pod. |
If you are configuring core OpenShift Container Platform monitoring components:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
ConfigMap
object.
If you are configuring components that monitor user-defined projects:
You have access to the cluster as a user with the cluster-admin
cluster role or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
If you have not done so yet, add a label to the nodes on which you want to run the monitoring components:
$ oc label nodes <node-name> <node-label>
Edit the ConfigMap
object:
To move a component that monitors core OpenShift Container Platform projects:
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Specify the node labels for the nodeSelector
constraint for the component under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
<component>: (1)
nodeSelector:
<node-label-1> (2)
<node-label-2> (3)
<...>
1 | Substitute <component> with the appropriate monitoring stack component name. |
2 | Substitute <node-label-1> with the label you added to the node. |
3 | Optional: Specify additional labels. If you specify additional labels, the pods for the component are only scheduled on the nodes that contain all of the specified labels. |
If monitoring components remain in a |
To move a component that monitors user-defined projects:
Edit the user-workload-monitoring-config
ConfigMap
object in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Specify the node labels for the nodeSelector
constraint for the component under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
<component>: (1)
nodeSelector:
<node-label-1> (2)
<node-label-2> (3)
<...>
1 | Substitute <component> with the appropriate monitoring stack component name. |
2 | Substitute <node-label-1> with the label you added to the node. |
3 | Optional: Specify additional labels. If you specify additional labels, the pods for the component are only scheduled on the nodes that contain all of the specified labels. |
If monitoring components remain in a |
Save the file to apply the changes. The components specified in the new configuration are automatically moved to the new nodes, and the pods affected by the new configuration are redeployed.
See Preparing to configure the monitoring stack for steps to create monitoring config maps
See the Kubernetes documentation for details on the nodeSelector
constraint
You can assign tolerations to any of the monitoring stack components to enable moving them to tainted nodes.
If you are configuring core OpenShift Container Platform monitoring components:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
ConfigMap
object.
If you are configuring components that monitor user-defined projects:
You have access to the cluster as a user with the cluster-admin
cluster role, or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
Edit the ConfigMap
object:
To assign tolerations to a component that monitors core OpenShift Container Platform projects:
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Specify tolerations
for the component:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
<component>:
tolerations:
<toleration_specification>
Substitute <component>
and <toleration_specification>
accordingly.
For example, oc adm taint nodes node1 key1=value1:NoSchedule
adds a taint to node1
with the key key1
and the value value1
. This prevents monitoring components from deploying pods on node1
unless a toleration is configured for that taint. The following example configures the alertmanagerMain
component to tolerate the example taint:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
alertmanagerMain:
tolerations:
- key: "key1"
operator: "Equal"
value: "value1"
effect: "NoSchedule"
To assign tolerations to a component that monitors user-defined projects:
Edit the user-workload-monitoring-config
ConfigMap
object in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Specify tolerations
for the component:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
<component>:
tolerations:
<toleration_specification>
Substitute <component>
and <toleration_specification>
accordingly.
For example, oc adm taint nodes node1 key1=value1:NoSchedule
adds a taint to node1
with the key key1
and the value value1
. This prevents monitoring components from deploying pods on node1
unless a toleration is configured for that taint. The following example configures the thanosRuler
component to tolerate the example taint:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
thanosRuler:
tolerations:
- key: "key1"
operator: "Equal"
value: "value1"
effect: "NoSchedule"
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
See Preparing to configure the monitoring stack for steps to create monitoring config maps
See the OpenShift Container Platform documentation on taints and tolerations
See the Kubernetes documentation on taints and tolerations
By default, no limit exists for the uncompressed body size for data returned from scraped metrics targets. You can set a body size limit to help avoid situations in which Prometheus consumes excessive amounts of memory when scraped targets return a response that contains a large amount of data. In addition, by setting a body size limit, you can reduce the impact that a malicious target might have on Prometheus and on the cluster as a whole.
After you set a value for enforcedBodySizeLimit
, the alert PrometheusScrapeBodySizeLimitHit
fires when at least one Prometheus scrape target replies with a response body larger than the configured value.
If metrics data scraped from a target has an uncompressed body size exceeding the configured size limit, the scrape fails.
Prometheus then considers this target to be down and sets its |
You have access to the cluster as a user with the cluster-admin
cluster role.
You have installed the OpenShift CLI (oc
).
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
namespace:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add a value for enforcedBodySizeLimit
to data/config.yaml/prometheusK8s
to limit the body size that can be accepted per target scrape:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |-
prometheusK8s:
enforcedBodySizeLimit: 40MB (1)
1 | Specify the maximum body size for scraped metrics targets.
This enforcedBodySizeLimit example limits the uncompressed size per target scrape to 40 megabytes.
Valid numeric values use the Prometheus data size format: B (bytes), KB (kilobytes), MB (megabytes), GB (gigabytes), TB (terabytes), PB (petabytes), and EB (exabytes).
The default value is 0 , which specifies no limit.
You can also set the value to automatic to calculate the limit automatically based on cluster capacity. |
Save the file to apply the changes. The new configuration is applied automatically.
You can ensure that the containers that run monitoring components have enough CPU and memory resources by specifying values for resource limits and requests for those components.
You can configure these limits and requests for core platform monitoring components in the openshift-monitoring
namespace and for the components that monitor user-defined projects in the openshift-user-workload-monitoring
namespace.
You can configure resource limits and request settings for core platform monitoring components and for the components that monitor user-defined projects, including the following components:
Alertmanager (for core platform monitoring and for user-defined projects)
kube-state-metrics
monitoring-plugin
node-exporter
openshift-state-metrics
Prometheus (for core platform monitoring and for user-defined projects)
Prometheus Adapter
Prometheus Operator and its admission webhook service
Telemeter Client
Thanos Querier
Thanos Ruler
By defining resource limits, you limit a container’s resource usage, which prevents the container from exceeding the specified maximum values for CPU and memory resources.
By defining resource requests, you specify that a container can be scheduled only on a node that has enough CPU and memory resources available to match the requested resources.
To configure CPU and memory resources, specify values for resource limits and requests in the appropriate ConfigMap
object for the namespace in which the monitoring component is located:
The cluster-monitoring-config
config map in the openshift-monitoring
namespace for core platform monitoring
The user-workload-monitoring-config
config map in the openshift-user-workload-monitoring
namespace for components that monitor user-defined projects
If you are configuring core platform monitoring components:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created a ConfigMap
object named cluster-monitoring-config
.
If you are configuring components that monitor user-defined projects:
You have access to the cluster as a user with the cluster-admin
cluster role, or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
You have installed the OpenShift CLI (oc
).
To configure core platform monitoring components, edit the cluster-monitoring-config
config map object in the openshift-monitoring
namespace:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add values to define resource limits and requests for each core platform monitoring component you want to configure.
Make sure that the value set for a limit is always higher than the value set for a request. Otherwise, an error will occur, and the container will not run. |
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
alertmanagerMain:
resources:
limits:
cpu: 500m
memory: 1Gi
requests:
cpu: 200m
memory: 500Mi
prometheusK8s:
resources:
limits:
cpu: 500m
memory: 3Gi
requests:
cpu: 200m
memory: 500Mi
prometheusOperator:
resources:
limits:
cpu: 500m
memory: 1Gi
requests:
cpu: 200m
memory: 500Mi
k8sPrometheusAdapter:
resources:
limits:
cpu: 500m
memory: 1Gi
requests:
cpu: 200m
memory: 500Mi
kubeStateMetrics:
resources:
limits:
cpu: 500m
memory: 1Gi
requests:
cpu: 200m
memory: 500Mi
telemeterClient:
resources:
limits:
cpu: 500m
memory: 1Gi
requests:
cpu: 200m
memory: 500Mi
openshiftStateMetrics:
resources:
limits:
cpu: 500m
memory: 1Gi
requests:
cpu: 200m
memory: 500Mi
thanosQuerier:
resources:
limits:
cpu: 500m
memory: 1Gi
requests:
cpu: 200m
memory: 500Mi
nodeExporter:
resources:
limits:
cpu: 50m
memory: 150Mi
requests:
cpu: 20m
memory: 50Mi
monitoringPlugin:
resources:
limits:
cpu: 500m
memory: 1Gi
requests:
cpu: 200m
memory: 500Mi
prometheusOperatorAdmissionWebhook:
resources:
limits:
cpu: 50m
memory: 100Mi
requests:
cpu: 20m
memory: 50Mi
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
Run cluster monitoring with persistent storage to gain the following benefits:
Protect your metrics and alerting data from data loss by storing them in a persistent volume (PV). As a result, they can survive pods being restarted or recreated.
Avoid getting duplicate notifications and losing silences for alerts when the Alertmanager pods are restarted.
For production environments, it is highly recommended to configure persistent storage.
In multi-node clusters, you must configure persistent storage for Prometheus, Alertmanager, and Thanos Ruler to ensure high availability. |
Dedicate sufficient persistent storage to ensure that the disk does not become full.
Use Filesystem
as the storage type value for the volumeMode
parameter when you configure the persistent volume.
|
To use a persistent volume (PV) for monitoring components, you must configure a persistent volume claim (PVC).
If you are configuring core OpenShift Container Platform monitoring components:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
ConfigMap
object.
If you are configuring components that monitor user-defined projects:
You have access to the cluster as a user with the cluster-admin
cluster role, or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
Edit the ConfigMap
object:
To configure a PVC for a component that monitors core OpenShift Container Platform projects:
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add your PVC configuration for the component under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
<component>: (1)
volumeClaimTemplate:
spec:
storageClassName: <storage_class> (2)
resources:
requests:
storage: <amount_of_storage> (3)
1 | Specify the core monitoring component for which you want to configure the PVC. |
2 | Specify an existing storage class. If a storage class is not specified, the default storage class is used. |
3 | Specify the amount of required storage. |
See the Kubernetes documentation on PersistentVolumeClaims for information on how to specify volumeClaimTemplate
.
The following example configures a PVC that claims persistent storage for the Prometheus instance that monitors core OpenShift Container Platform components:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
volumeClaimTemplate:
spec:
storageClassName: my-storage-class
resources:
requests:
storage: 40Gi
To configure a PVC for a component that monitors user-defined projects:
Edit the user-workload-monitoring-config
ConfigMap
object in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Add your PVC configuration for the component under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
<component>: (1)
volumeClaimTemplate:
spec:
storageClassName: <storage_class> (2)
resources:
requests:
storage: <amount_of_storage> (3)
1 | Specify the component for user-defined monitoring for which you want to configure the PVC. |
2 | Specify an existing storage class. If a storage class is not specified, the default storage class is used. |
3 | Specify the amount of required storage. |
See the Kubernetes documentation on PersistentVolumeClaims for information on how to specify volumeClaimTemplate
.
The following example configures a PVC that claims persistent storage for Thanos Ruler:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
thanosRuler:
volumeClaimTemplate:
spec:
storageClassName: my-storage-class
resources:
requests:
storage: 10Gi
Storage requirements for the |
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed and the new storage configuration is applied.
When you update the config map with a PVC configuration, the affected |
You can resize a persistent volume (PV) for monitoring components, such as Prometheus, Thanos Ruler, or Alertmanager. You need to manually expand a persistent volume claim (PVC), and then update the config map in which the component is configured.
You can only expand the size of the PVC. Shrinking the storage size is not possible. |
You have installed the OpenShift CLI (oc
).
If you are configuring core OpenShift Container Platform monitoring components:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
ConfigMap
object.
You have configured at least one PVC for core OpenShift Container Platform monitoring components.
If you are configuring components that monitor user-defined projects:
You have access to the cluster as a user with the cluster-admin
cluster role, or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have configured at least one PVC for components that monitor user-defined projects.
Manually expand a PVC with the updated storage request. For more information, see "Expanding persistent volume claims (PVCs) with a file system" in Expanding persistent volumes.
Edit the ConfigMap
object:
If you are configuring core OpenShift Container Platform monitoring components:
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add a new storage size for the PVC configuration for the component under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
<component>: (1)
volumeClaimTemplate:
spec:
resources:
requests:
storage: <amount_of_storage> (2)
1 | The component for which you want to change the storage size. |
2 | Specify the new size for the storage volume. It must be greater than the previous value. |
The following example sets the new PVC request to 100 gigabytes for the Prometheus instance that monitors core OpenShift Container Platform components:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
volumeClaimTemplate:
spec:
resources:
requests:
storage: 100Gi
If you are configuring components that monitor user-defined projects:
You can resize the volumes for the Thanos Ruler and for instances of Alertmanager and Prometheus that monitor user-defined projects. |
Edit the user-workload-monitoring-config
ConfigMap
object in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Update the PVC configuration for the monitoring component under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
<component>: (1)
volumeClaimTemplate:
spec:
resources:
requests:
storage: <amount_of_storage> (2)
1 | The component for which you want to change the storage size. |
2 | Specify the new size for the storage volume. It must be greater than the previous value. |
The following example sets the new PVC request to 20 gigabytes for Thanos Ruler:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
thanosRuler:
volumeClaimTemplate:
spec:
resources:
requests:
storage: 20Gi
Storage requirements for the |
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
When you update the config map with a new storage size, the affected |
By default, Prometheus retains metrics data for the following durations:
Core platform monitoring: 15 days
Monitoring for user-defined projects: 24 hours
You can modify the retention time for Prometheus to change how soon the data is deleted. You can also set the maximum amount of disk space the retained metrics data uses. If the data reaches this size limit, Prometheus deletes the oldest data first until the disk space used is again below the limit.
Note the following behaviors of these data retention settings:
The size-based retention policy applies to all data block directories in the /prometheus
directory, including persistent blocks, write-ahead log (WAL) data, and m-mapped chunks.
Data in the /wal
and /head_chunks
directories counts toward the retention size limit, but Prometheus never purges data from these directories based on size- or time-based retention policies.
Thus, if you set a retention size limit lower than the maximum size set for the /wal
and /head_chunks
directories, you have configured the system not to retain any data blocks in the /prometheus
data directories.
The size-based retention policy is applied only when Prometheus cuts a new data block, which occurs every two hours after the WAL contains at least three hours of data.
If you do not explicitly define values for either retention
or retentionSize
, retention time defaults to 15 days for core platform monitoring and 24 hours for user-defined project monitoring. Retention size is not set.
If you define values for both retention
and retentionSize
, both values apply.
If any data blocks exceed the defined retention time or the defined size limit, Prometheus purges these data blocks.
If you define a value for retentionSize
and do not define retention
, only the retentionSize
value applies.
If you do not define a value for retentionSize
and only define a value for retention
, only the retention
value applies.
If you set the retentionSize
or retention
value to 0
, the default settings apply. The default settings set retention time to 15 days for core platform monitoring and 24 hours for user-defined project monitoring. By default, retention size is not set.
Data compaction occurs every two hours. Therefore, a persistent volume (PV) might fill up before compaction, potentially exceeding the |
If you are configuring core OpenShift Container Platform monitoring components:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
ConfigMap
object.
If you are configuring components that monitor user-defined projects:
You have access to the cluster as a user with the cluster-admin
cluster role, or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
Edit the ConfigMap
object:
To modify the retention time and size for the Prometheus instance that monitors core OpenShift Container Platform projects:
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add the retention time and size configuration under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
retention: <time_specification> (1)
retentionSize: <size_specification> (2)
1 | The retention time: a number directly followed by ms (milliseconds), s (seconds), m (minutes), h (hours), d (days), w (weeks), or y (years). You can also combine time values for specific times, such as 1h30m15s . |
2 | The retention size: a number directly followed by B (bytes), KB (kilobytes), MB (megabytes), GB (gigabytes), TB (terabytes), PB (petabytes), and EB (exabytes). |
The following example sets the retention time to 24 hours and the retention size to 10 gigabytes for the Prometheus instance that monitors core OpenShift Container Platform components:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
retention: 24h
retentionSize: 10GB
To modify the retention time and size for the Prometheus instance that monitors user-defined projects:
Edit the user-workload-monitoring-config
ConfigMap
object in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Add the retention time and size configuration under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
retention: <time_specification> (1)
retentionSize: <size_specification> (2)
1 | The retention time: a number directly followed by ms (milliseconds), s (seconds), m (minutes), h (hours), d (days), w (weeks), or y (years).
You can also combine time values for specific times, such as 1h30m15s . |
2 | The retention size: a number directly followed by B (bytes), KB (kilobytes), MB (megabytes), GB (gigabytes), TB (terabytes), PB (petabytes), or EB (exabytes). |
The following example sets the retention time to 24 hours and the retention size to 10 gigabytes for the Prometheus instance that monitors user-defined projects:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
retention: 24h
retentionSize: 10GB
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
By default, for user-defined projects, Thanos Ruler automatically retains metrics data for 24 hours. You can modify the retention time to change how long this data is retained by specifying a time value in the user-workload-monitoring-config
config map in the openshift-user-workload-monitoring
namespace.
You have access to the cluster as a user with the cluster-admin
cluster role or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
Edit the user-workload-monitoring-config
ConfigMap
object in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Add the retention time configuration under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
thanosRuler:
retention: <time_specification> (1)
1 | Specify the retention time in the following format: a number directly followed by ms (milliseconds), s (seconds), m (minutes), h (hours), d (days), w (weeks), or y (years).
You can also combine time values for specific times, such as 1h30m15s .
The default is 24h . |
The following example sets the retention time to 10 days for Thanos Ruler data:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
thanosRuler:
retention: 10d
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
You can configure remote write storage to enable Prometheus to send ingested metrics to remote systems for long-term storage. Doing so has no impact on how or for how long Prometheus stores metrics.
If you are configuring core OpenShift Container Platform monitoring components:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
ConfigMap
object.
If you are configuring components that monitor user-defined projects:
You have access to the cluster as a user with the cluster-admin
cluster role or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
You have set up a remote write compatible endpoint (such as Thanos) and know the endpoint URL. See the Prometheus remote endpoints and storage documentation for information about endpoints that are compatible with the remote write feature.
Red Hat only provides information for configuring remote write senders and does not offer guidance on configuring receiver endpoints. Customers are responsible for setting up their own endpoints that are remote-write compatible. Issues with endpoint receiver configurations are not included in Red Hat production support. |
You have set up authentication credentials in a Secret
object for the remote write endpoint. You must create the secret in the
same namespace as the Prometheus object for which you configure remote write: the openshift-monitoring
namespace for default platform monitoring or the openshift-user-workload-monitoring
namespace for user workload monitoring.
To reduce security risks, use HTTPS and authentication to send metrics to an endpoint. |
Edit the ConfigMap
object:
To configure remote write for the Prometheus instance that monitors core OpenShift Container Platform projects:
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add a remoteWrite:
section under data/config.yaml/prometheusK8s
, as shown in the following example:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://remote-write-endpoint.example.com" (1)
<endpoint_authentication_credentials> (2)
1 | The URL of the remote write endpoint. |
2 | The authentication method and credentials for the endpoint.
Currently supported authentication methods are AWS Signature Version 4, authentication using HTTP in an Authorization request header, Basic authentication, OAuth 2.0, and TLS client.
See Supported remote write authentication settings for sample configurations of supported authentication methods. |
Add write relabel configuration values after the authentication credentials:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://remote-write-endpoint.example.com"
<endpoint_authentication_credentials>
writeRelabelConfigs:
- <your_write_relabel_configs> (1)
1 | Add configuration for metrics that you want to send to the remote endpoint. |
my_metric
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://remote-write-endpoint.example.com"
writeRelabelConfigs:
- sourceLabels: [__name__]
regex: 'my_metric'
action: keep
my_metric_1
and my_metric_2
in my_namespace
namespaceapiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://remote-write-endpoint.example.com"
writeRelabelConfigs:
- sourceLabels: [__name__,namespace]
regex: '(my_metric_1|my_metric_2);my_namespace'
action: keep
To configure remote write for the Prometheus instance that monitors user-defined projects:
Edit the user-workload-monitoring-config
ConfigMap
object in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Add a remoteWrite:
section under data/config.yaml/prometheus
, as shown in the following example:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
remoteWrite:
- url: "https://remote-write-endpoint.example.com" (1)
<endpoint_authentication_credentials> (2)
1 | The URL of the remote write endpoint. |
2 | The authentication method and credentials for the endpoint.
Currently supported authentication methods are AWS Signature Version 4, authentication using HTTP an Authorization request header, basic authentication, OAuth 2.0, and TLS client.
See Supported remote write authentication settings below for sample configurations of supported authentication methods. |
Add write relabel configuration values after the authentication credentials:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
remoteWrite:
- url: "https://remote-write-endpoint.example.com"
<endpoint_authentication_credentials>
writeRelabelConfigs:
- <your_write_relabel_configs> (1)
1 | Add configuration for metrics that you want to send to the remote endpoint. |
my_metric
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
remoteWrite:
- url: "https://remote-write-endpoint.example.com"
writeRelabelConfigs:
- sourceLabels: [__name__]
regex: 'my_metric'
action: keep
my_metric_1
and my_metric_2
in my_namespace
namespaceapiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
remoteWrite:
- url: "https://remote-write-endpoint.example.com"
writeRelabelConfigs:
- sourceLabels: [__name__,namespace]
regex: '(my_metric_1|my_metric_2);my_namespace'
action: keep
Save the file to apply the changes. The new configuration is applied automatically.
You can use different methods to authenticate with a remote write endpoint. Currently supported authentication methods are AWS Signature Version 4, basic authentication, authorization, OAuth 2.0, and TLS client. The following table provides details about supported authentication methods for use with remote write.
Authentication method | Config map field | Description |
---|---|---|
AWS Signature Version 4 |
|
This method uses AWS Signature Version 4 authentication to sign requests. You cannot use this method simultaneously with authorization, OAuth 2.0, or Basic authentication. |
Basic authentication |
|
Basic authentication sets the authorization header on every remote write request with the configured username and password. |
authorization |
|
Authorization sets the |
OAuth 2.0 |
|
An OAuth 2.0 configuration uses the client credentials grant type.
Prometheus fetches an access token from |
TLS client |
|
A TLS client configuration specifies the CA certificate, the client certificate, and the client key file information used to authenticate with the remote write endpoint server using TLS. The sample configuration assumes that you have already created a CA certificate file, a client certificate file, and a client key file. |
The following samples show different authentication settings you can use to connect to a remote write endpoint. Each sample also shows how to configure a corresponding Secret
object that contains authentication credentials and other relevant settings. Each sample configures authentication for use with
default platform monitoring
in the openshift-monitoring
namespace.
The following shows the settings for a sigv4
secret named sigv4-credentials
in the openshift-monitoring
namespace.
apiVersion: v1
kind: Secret
metadata:
name: sigv4-credentials
namespace: openshift-monitoring
stringData:
accessKey: <AWS_access_key> (1)
secretKey: <AWS_secret_key> (2)
type: Opaque
1 | The AWS API access key. |
2 | The AWS API secret key. |
The following shows sample AWS Signature Version 4 remote write authentication settings that use a Secret
object named sigv4-credentials
in the openshift-monitoring
namespace:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://authorization.example.com/api/write"
sigv4:
region: <AWS_region> (1)
accessKey:
name: sigv4-credentials (2)
key: accessKey (3)
secretKey:
name: sigv4-credentials (2)
key: secretKey (4)
profile: <AWS_profile_name> (5)
roleArn: <AWS_role_arn> (6)
1 | The AWS region. |
2 | The name of the Secret object containing the AWS API access credentials. |
3 | The key that contains the AWS API access key in the specified Secret object. |
4 | The key that contains the AWS API secret key in the specified Secret object. |
5 | The name of the AWS profile that is being used to authenticate. |
6 | The unique identifier for the Amazon Resource Name (ARN) assigned to your role. |
The following shows sample Basic authentication settings for a Secret
object named rw-basic-auth
in the openshift-monitoring
namespace:
apiVersion: v1
kind: Secret
metadata:
name: rw-basic-auth
namespace: openshift-monitoring
stringData:
user: <basic_username> (1)
password: <basic_password> (2)
type: Opaque
1 | The username. |
2 | The password. |
The following sample shows a basicAuth
remote write configuration that uses a Secret
object named rw-basic-auth
in the openshift-monitoring
namespace.
It assumes that you have already set up authentication credentials for the endpoint.
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://basicauth.example.com/api/write"
basicAuth:
username:
name: rw-basic-auth (1)
key: user (2)
password:
name: rw-basic-auth (1)
key: password (3)
1 | The name of the Secret object that contains the authentication credentials. |
2 | The key that contains the username in the specified Secret object. |
3 | The key that contains the password in the specified Secret object. |
Secret
ObjectThe following shows bearer token settings for a Secret
object named rw-bearer-auth
in the openshift-monitoring
namespace:
apiVersion: v1
kind: Secret
metadata:
name: rw-bearer-auth
namespace: openshift-monitoring
stringData:
token: <authentication_token> (1)
type: Opaque
1 | The authentication token. |
The following shows sample bearer token config map settings that use a Secret
object named rw-bearer-auth
in the openshift-monitoring
namespace:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
enableUserWorkload: true
prometheusK8s:
remoteWrite:
- url: "https://authorization.example.com/api/write"
authorization:
type: Bearer (1)
credentials:
name: rw-bearer-auth (2)
key: token (3)
1 | The authentication type of the request. The default value is Bearer . |
2 | The name of the Secret object that contains the authentication credentials. |
3 | The key that contains the authentication token in the specified Secret object. |
The following shows sample OAuth 2.0 settings for a Secret
object named oauth2-credentials
in the openshift-monitoring
namespace:
apiVersion: v1
kind: Secret
metadata:
name: oauth2-credentials
namespace: openshift-monitoring
stringData:
id: <oauth2_id> (1)
secret: <oauth2_secret> (2)
type: Opaque
1 | The Oauth 2.0 ID. |
2 | The OAuth 2.0 secret. |
The following shows an oauth2
remote write authentication sample configuration that uses a Secret
object named oauth2-credentials
in the openshift-monitoring
namespace:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://test.example.com/api/write"
oauth2:
clientId:
secret:
name: oauth2-credentials (1)
key: id (2)
clientSecret:
name: oauth2-credentials (1)
key: secret (2)
tokenUrl: https://example.com/oauth2/token (3)
scopes: (4)
- <scope_1>
- <scope_2>
endpointParams: (5)
param1: <parameter_1>
param2: <parameter_2>
1 | The name of the corresponding Secret object. Note that ClientId can alternatively refer to a ConfigMap object, although clientSecret must refer to a Secret object. |
2 | The key that contains the OAuth 2.0 credentials in the specified Secret object. |
3 | The URL used to fetch a token with the specified clientId and clientSecret . |
4 | The OAuth 2.0 scopes for the authorization request. These scopes limit what data the tokens can access. |
5 | The OAuth 2.0 authorization request parameters required for the authorization server. |
The following shows sample TLS client settings for a tls
Secret
object named mtls-bundle
in the openshift-monitoring
namespace.
apiVersion: v1
kind: Secret
metadata:
name: mtls-bundle
namespace: openshift-monitoring
data:
ca.crt: <ca_cert> (1)
client.crt: <client_cert> (2)
client.key: <client_key> (3)
type: tls
1 | The CA certificate in the Prometheus container with which to validate the server certificate. |
2 | The client certificate for authentication with the server. |
3 | The client key. |
The following sample shows a tlsConfig
remote write authentication configuration that uses a TLS Secret
object named mtls-bundle
.
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://remote-write-endpoint.example.com"
tlsConfig:
ca:
secret:
name: mtls-bundle (1)
key: ca.crt (2)
cert:
secret:
name: mtls-bundle (1)
key: client.crt (3)
keySecret:
name: mtls-bundle (1)
key: client.key (4)
1 | The name of the corresponding Secret object that contains the TLS authentication credentials. Note that ca and cert can alternatively refer to a ConfigMap object, though keySecret must refer to a Secret object. |
2 | The key in the specified Secret object that contains the CA certificate for the endpoint. |
3 | The key in the specified Secret object that contains the client certificate for the endpoint. |
4 | The key in the specified Secret object that contains the client key secret. |
You can use the queueConfig
object for remote write to tune the remote write queue parameters. The following example shows the queue parameters with their default values for
default platform monitoring
in the openshift-monitoring
namespace.
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://remote-write-endpoint.example.com"
<endpoint_authentication_credentials>
queueConfig:
capacity: 10000 (1)
minShards: 1 (2)
maxShards: 50 (3)
maxSamplesPerSend: 2000 (4)
batchSendDeadline: 5s (5)
minBackoff: 30ms (6)
maxBackoff: 5s (7)
retryOnRateLimit: false (8)
sampleAgeLimit: 0s (9)
1 | The number of samples to buffer per shard before they are dropped from the queue. |
2 | The minimum number of shards. |
3 | The maximum number of shards. |
4 | The maximum number of samples per send. |
5 | The maximum time for a sample to wait in buffer. |
6 | The initial time to wait before retrying a failed request. The time gets doubled for every retry up to the maxbackoff time. |
7 | The maximum time to wait before retrying a failed request. |
8 | Set this parameter to true to retry a request after receiving a 429 status code from the remote write storage. |
9 | The samples that are older than the sampleAgeLimit limit are dropped from the queue. If the value is undefined or set to 0s , the parameter is ignored. |
Setting up remote write compatible endpoints (Prometheus documentation)
Tuning remote write settings (Prometheus documentation)
If you manage multiple OpenShift Container Platform clusters and use the remote write feature to send metrics data from these clusters to an external storage location, you can add cluster ID labels to identify the metrics data coming from different clusters. You can then query these labels to identify the source cluster for a metric and distinguish that data from similar metrics data sent by other clusters.
This way, if you manage many clusters for multiple customers and send metrics data to a single centralized storage system, you can use cluster ID labels to query metrics for a particular cluster or customer.
Creating and using cluster ID labels involves three general steps:
Configuring the write relabel settings for remote write storage.
Adding cluster ID labels to the metrics.
Querying these labels to identify the source cluster or customer for a metric.
You can create cluster ID labels for metrics for default platform monitoring and for user workload monitoring.
For default platform monitoring, you add cluster ID labels for metrics in the write_relabel
settings for remote write storage in the cluster-monitoring-config
config map in the openshift-monitoring
namespace.
For user workload monitoring, you edit the settings in the user-workload-monitoring-config
config map in the openshift-user-workload-monitoring
namespace.
When Prometheus scrapes user workload targets that expose a |
If you are configuring default platform monitoring components:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
ConfigMap
object.
If you are configuring components that monitor user-defined projects:
You have access to the cluster as a user with the cluster-admin
cluster role or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
You have configured remote write storage.
Edit the ConfigMap
object:
To create cluster ID labels for core OpenShift Container Platform metrics:
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
In the writeRelabelConfigs:
section under data/config.yaml/prometheusK8s/remoteWrite
, add cluster ID relabel configuration values:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://remote-write-endpoint.example.com"
<endpoint_authentication_credentials>
writeRelabelConfigs: (1)
- <relabel_config> (2)
1 | Add a list of write relabel configurations for metrics that you want to send to the remote endpoint. |
2 | Substitute the label configuration for the metrics sent to the remote write endpoint. |
The following sample shows how to forward a metric with the cluster ID label cluster_id
in default platform monitoring:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://remote-write-endpoint.example.com"
writeRelabelConfigs:
- sourceLabels:
- __tmp_openshift_cluster_id__ (1)
targetLabel: cluster_id (2)
action: replace (3)
1 | The system initially applies a temporary cluster ID source label named __tmp_openshift_cluster_id__ . This temporary label gets replaced by the cluster ID label name that you specify. |
2 | Specify the name of the cluster ID label for metrics sent to remote write storage.
If you use a label name that already exists for a metric, that value is overwritten with the name of this cluster ID label.
For the label name, do not use __tmp_openshift_cluster_id__ . The final relabeling step removes labels that use this name. |
3 | The replace write relabel action replaces the temporary label with the target label for outgoing metrics.
This action is the default and is applied if no action is specified. |
To create cluster ID labels for user-defined project metrics:
Edit the user-workload-monitoring-config
ConfigMap
object in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
In the writeRelabelConfigs:
section under data/config.yaml/prometheus/remoteWrite
, add cluster ID relabel configuration values:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
remoteWrite:
- url: "https://remote-write-endpoint.example.com"
<endpoint_authentication_credentials>
writeRelabelConfigs: (1)
- <relabel_config> (2)
1 | Add a list of write relabel configurations for metrics that you want to send to the remote endpoint. |
2 | Substitute the label configuration for the metrics sent to the remote write endpoint. |
The following sample shows how to forward a metric with the cluster ID label cluster_id
in user-workload monitoring:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
remoteWrite:
- url: "https://remote-write-endpoint.example.com"
writeRelabelConfigs:
- sourceLabels:
- __tmp_openshift_cluster_id__ (1)
targetLabel: cluster_id (2)
action: replace (3)
1 | The system initially applies a temporary cluster ID source label named __tmp_openshift_cluster_id__ . This temporary label gets replaced by the cluster ID label name that you specify. |
2 | Specify the name of the cluster ID label for metrics sent to remote write storage. If you use a label name that already exists for a metric, that value is overwritten with the name of this cluster ID label. For the label name, do not use __tmp_openshift_cluster_id__ . The final relabeling step removes labels that use this name. |
3 | The replace write relabel action replaces the temporary label with the target label for outgoing metrics. This action is the default and is applied if no action is specified. |
Save the file to apply the changes. The new configuration is applied automatically.
Using a metrics collection profile is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. For more information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/support/offerings/techpreview. |
By default, Prometheus collects metrics exposed by all default metrics targets in OpenShift Container Platform components. However, you might want Prometheus to collect fewer metrics from a cluster in certain scenarios:
If cluster administrators require only alert, telemetry, and console metrics and do not require other metrics to be available.
If a cluster increases in size, and the increased size of the default metrics data collected now requires a significant increase in CPU and memory resources.
You can use a metrics collection profile to collect either the default amount of metrics data or a minimal amount of metrics data. When you collect minimal metrics data, basic monitoring features such as alerting continue to work. At the same time, the CPU and memory resources required by Prometheus decrease.
You can enable one of two metrics collection profiles:
full: Prometheus collects metrics data exposed by all platform components. This setting is the default.
minimal: Prometheus collects only the metrics data required for platform alerts, recording rules, telemetry, and console dashboards.
To choose a metrics collection profile for core OpenShift Container Platform monitoring components, edit the cluster-monitoring-config
ConfigMap
object.
You have installed the OpenShift CLI (oc
).
You have enabled Technology Preview features by using the FeatureGate
custom resource (CR).
You have created the cluster-monitoring-config
ConfigMap
object.
You have access to the cluster as a user with the cluster-admin
cluster role.
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add the metrics collection profile setting under data/config.yaml/prometheusK8s
:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
collectionProfile: <metrics_collection_profile_name> (1)
1 | The name of the metrics collection profile.
The available values are full or minimal .
If you do not specify a value or if the collectionProfile key name does not exist in the config map, the default setting of full is used. |
The following example sets the metrics collection profile to minimal
for the core platform instance of Prometheus:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
collectionProfile: minimal
Save the file to apply the changes. The new configuration is applied automatically.
See Viewing a list of available metrics for steps to view a list of metrics being collected for a cluster.
See Enabling features using feature gates for steps to enable Technology Preview features.
Developers can create labels to define attributes for metrics in the form of key-value pairs. The number of potential key-value pairs corresponds to the number of possible values for an attribute. An attribute that has an unlimited number of potential values is called an unbound attribute. For example, a customer_id
attribute is unbound because it has an infinite number of possible values.
Every assigned key-value pair has a unique time series. The use of many unbound attributes in labels can result in an exponential increase in the number of time series created. This can impact Prometheus performance and can consume a lot of disk space.
Cluster administrators can use the following measures to control the impact of unbound metrics attributes in user-defined projects:
Limit the number of samples that can be accepted per target scrape in user-defined projects
Limit the number of scraped labels, the length of label names, and the length of label values
Create alerts that fire when a scrape sample threshold is reached or when the target cannot be scraped
Limiting scrape samples can help prevent the issues caused by adding many unbound attributes to labels. Developers can also prevent the underlying cause by limiting the number of unbound attributes that they define for metrics. Using attributes that are bound to a limited set of possible values reduces the number of potential key-value pair combinations. |
You can limit the number of samples that can be accepted per target scrape in user-defined projects. You can also limit the number of scraped labels, the length of label names, and the length of label values.
If you set sample or label limits, no further sample data is ingested for that target scrape after the limit is reached. |
You have access to the cluster as a user with the cluster-admin
cluster role, or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
Edit the user-workload-monitoring-config
ConfigMap
object in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Add the enforcedSampleLimit
configuration to data/config.yaml
to limit the number of samples that can be accepted per target scrape in user-defined projects:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
enforcedSampleLimit: 50000 (1)
1 | A value is required if this parameter is specified. This enforcedSampleLimit example limits the number of samples that can be accepted per target scrape in user-defined projects to 50,000. |
Add the enforcedLabelLimit
, enforcedLabelNameLengthLimit
, and enforcedLabelValueLengthLimit
configurations to data/config.yaml
to limit the number of scraped labels, the length of label names, and the length of label values in user-defined projects:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
enforcedLabelLimit: 500 (1)
enforcedLabelNameLengthLimit: 50 (2)
enforcedLabelValueLengthLimit: 600 (3)
1 | Specifies the maximum number of labels per scrape.
The default value is 0 , which specifies no limit. |
2 | Specifies the maximum length in characters of a label name.
The default value is 0 , which specifies no limit. |
3 | Specifies the maximum length in characters of a label value.
The default value is 0 , which specifies no limit. |
Save the file to apply the changes. The limits are applied automatically.
You can create alerts that notify you when:
The target cannot be scraped or is not available for the specified for
duration
A scrape sample threshold is reached or is exceeded for the specified for
duration
You have access to the cluster as a user with the cluster-admin
cluster role, or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have limited the number of samples that can be accepted per target scrape in user-defined projects, by using enforcedSampleLimit
.
You have installed the OpenShift CLI (oc
).
Create a YAML file with alerts that inform you when the targets are down and when the enforced sample limit is approaching. The file in this example is called monitoring-stack-alerts.yaml
:
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
labels:
prometheus: k8s
role: alert-rules
name: monitoring-stack-alerts (1)
namespace: ns1 (2)
spec:
groups:
- name: general.rules
rules:
- alert: TargetDown (3)
annotations:
message: '{{ printf "%.4g" $value }}% of the {{ $labels.job }}/{{ $labels.service
}} targets in {{ $labels.namespace }} namespace are down.' (4)
expr: 100 * (count(up == 0) BY (job, namespace, service) / count(up) BY (job,
namespace, service)) > 10
for: 10m (5)
labels:
severity: warning (6)
- alert: ApproachingEnforcedSamplesLimit (7)
annotations:
message: '{{ $labels.container }} container of the {{ $labels.pod }} pod in the {{ $labels.namespace }} namespace consumes {{ $value | humanizePercentage }} of the samples limit budget.' (8)
expr: scrape_samples_scraped/50000 > 0.8 (9)
for: 10m (10)
labels:
severity: warning (11)
1 | Defines the name of the alerting rule. |
2 | Specifies the user-defined project where the alerting rule will be deployed. |
3 | The TargetDown alert will fire if the target cannot be scraped or is not available for the for duration. |
4 | The message that will be output when the TargetDown alert fires. |
5 | The conditions for the TargetDown alert must be true for this duration before the alert is fired. |
6 | Defines the severity for the TargetDown alert. |
7 | The ApproachingEnforcedSamplesLimit alert will fire when the defined scrape sample threshold is reached or exceeded for the specified for duration. |
8 | The message that will be output when the ApproachingEnforcedSamplesLimit alert fires. |
9 | The threshold for the ApproachingEnforcedSamplesLimit alert. In this example the alert will fire when the number of samples per target scrape has exceeded 80% of the enforced sample limit of 50000 . The for duration must also have passed before the alert will fire. The <number> in the expression scrape_samples_scraped/<number> > <threshold> must match the enforcedSampleLimit value defined in the user-workload-monitoring-config ConfigMap object. |
10 | The conditions for the ApproachingEnforcedSamplesLimit alert must be true for this duration before the alert is fired. |
11 | Defines the severity for the ApproachingEnforcedSamplesLimit alert. |
Apply the configuration to the user-defined project:
$ oc apply -f monitoring-stack-alerts.yaml
See Determining why Prometheus is consuming a lot of disk space for steps to query which metrics have the highest number of scrape samples.
The OpenShift Container Platform monitoring stack includes a local Alertmanager instance that routes alerts from Prometheus. You can add external Alertmanager instances to route alerts for core OpenShift Container Platform projects or user-defined projects.
If you add the same external Alertmanager configuration for multiple clusters and disable the local instance for each cluster, you can then manage alert routing for multiple clusters by using a single external Alertmanager instance.
If you are configuring core OpenShift Container Platform monitoring components in the openshift-monitoring
project:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
config map.
If you are configuring components that monitor user-defined projects:
You have access to the cluster as a user with the cluster-admin
cluster role, or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
Edit the ConfigMap
object.
To configure additional Alertmanagers for routing alerts from core OpenShift Container Platform projects:
Edit the cluster-monitoring-config
config map in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add an additionalAlertmanagerConfigs:
section under data/config.yaml/prometheusK8s
.
Add the configuration details for additional Alertmanagers in this section:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
additionalAlertmanagerConfigs:
- <alertmanager_specification>
For <alertmanager_specification>
, substitute authentication and other configuration details for additional Alertmanager instances.
Currently supported authentication methods are bearer token (bearerToken
) and client TLS (tlsConfig
).
The following sample config map configures an additional Alertmanager using a bearer token with client TLS authentication:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
additionalAlertmanagerConfigs:
- scheme: https
pathPrefix: /
timeout: "30s"
apiVersion: v1
bearerToken:
name: alertmanager-bearer-token
key: token
tlsConfig:
key:
name: alertmanager-tls
key: tls.key
cert:
name: alertmanager-tls
key: tls.crt
ca:
name: alertmanager-tls
key: tls.ca
staticConfigs:
- external-alertmanager1-remote.com
- external-alertmanager1-remote2.com
To configure additional Alertmanager instances for routing alerts from user-defined projects:
Edit the user-workload-monitoring-config
config map in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Add a <component>/additionalAlertmanagerConfigs:
section under data/config.yaml/
.
Add the configuration details for additional Alertmanagers in this section:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
<component>:
additionalAlertmanagerConfigs:
- <alertmanager_specification>
For <component>
, substitute one of two supported external Alertmanager components: prometheus
or thanosRuler
.
For <alertmanager_specification>
, substitute authentication and other configuration details for additional Alertmanager instances. Currently supported authentication methods are bearer token (bearerToken
) and client TLS (tlsConfig
). The following sample config map configures an additional Alertmanager using Thanos Ruler with a bearer token and client TLS authentication:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
thanosRuler:
additionalAlertmanagerConfigs:
- scheme: https
pathPrefix: /
timeout: "30s"
apiVersion: v1
bearerToken:
name: alertmanager-bearer-token
key: token
tlsConfig:
key:
name: alertmanager-tls
key: tls.key
cert:
name: alertmanager-tls
key: tls.crt
ca:
name: alertmanager-tls
key: tls.ca
staticConfigs:
- external-alertmanager1-remote.com
- external-alertmanager1-remote2.com
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
The OpenShift Container Platform monitoring stack includes Alertmanager, which routes alerts from Prometheus to endpoint receivers. If you need to authenticate with a receiver so that Alertmanager can send alerts to it, you can configure Alertmanager to use a secret that contains authentication credentials for the receiver.
For example, you can configure Alertmanager to use a secret to authenticate with an endpoint receiver that requires a certificate issued by a private Certificate Authority (CA).
You can also configure Alertmanager to use a secret to authenticate with a receiver that requires a password file for Basic HTTP authentication.
In either case, authentication details are contained in the Secret
object rather than in the ConfigMap
object.
You can add secrets to the Alertmanager configuration for core platform monitoring components by editing the cluster-monitoring-config
config map in the openshift-monitoring
project.
After you add a secret to the config map, the secret is mounted as a volume at /etc/alertmanager/secrets/<secret_name>
within the alertmanager
container for the Alertmanager pods.
If you are configuring core OpenShift Container Platform monitoring components in the openshift-monitoring
project:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
config map.
You have created the secret to be configured in Alertmanager in the openshift-monitoring
project.
If you are configuring components that monitor user-defined projects:
You have access to the cluster as a user with the cluster-admin
cluster role, or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
You have created the secret to be configured in Alertmanager in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
Edit the ConfigMap
object.
To add a secret configuration to Alertmanager for core platform monitoring:
Edit the cluster-monitoring-config
config map in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add a secrets:
section under data/config.yaml/alertmanagerMain
with the following configuration:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
alertmanagerMain:
secrets: (1)
- <secret_name_1> (2)
- <secret_name_2>
1 | This section contains the secrets to be mounted into Alertmanager. The secrets must be located within the same namespace as the Alertmanager object. |
2 | The name of the Secret object that contains authentication credentials for the receiver. If you add multiple secrets, place each one on a new line. |
The following sample config map settings configure Alertmanager to use two Secret
objects named test-secret-basic-auth
and test-secret-api-token
:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
alertmanagerMain:
secrets:
- test-secret-basic-auth
- test-secret-api-token
To add a secret configuration to Alertmanager for user-defined project monitoring:
Edit the user-workload-monitoring-config
config map in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Add a secrets:
section under data/config.yaml/alertmanager/secrets
with the following configuration:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
alertmanager:
secrets: (1)
- <secret_name_1> (2)
- <secret_name_2>
1 | This section contains the secrets to be mounted into Alertmanager. The secrets must be located within the same namespace as the Alertmanager object. |
2 | The name of the Secret object that contains authentication credentials for the receiver. If you add multiple secrets, place each one on a new line. |
The following sample config map settings configure Alertmanager to use two Secret
objects named test-secret
and test-secret-api-token
:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
alertmanager:
enabled: true
secrets:
- test-secret
- test-api-receiver-token
Save the file to apply the changes. The new configuration is applied automatically.
You can attach custom labels to all time series and alerts leaving Prometheus by using the external labels feature of Prometheus.
If you are configuring core OpenShift Container Platform monitoring components:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
ConfigMap
object.
If you are configuring components that monitor user-defined projects:
You have access to the cluster as a user with the cluster-admin
cluster role, or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
Edit the ConfigMap
object:
To attach custom labels to all time series and alerts leaving the Prometheus instance that monitors core OpenShift Container Platform projects:
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Define a map of labels you want to add for every metric under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
externalLabels:
<key>: <value> (1)
1 | Substitute <key>: <value> with a map of key-value pairs where <key> is a unique name for the new label and <value> is its value. |
|
For example, to add metadata about the region and environment to all time series and alerts, use the following example:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
externalLabels:
region: eu
environment: prod
Save the file to apply the changes. The new configuration is applied automatically.
To attach custom labels to all time series and alerts leaving the Prometheus instance that monitors user-defined projects:
Edit the user-workload-monitoring-config
ConfigMap
object in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Define a map of labels you want to add for every metric under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
externalLabels:
<key>: <value> (1)
1 | Substitute <key>: <value> with a map of key-value pairs where <key> is a unique name for the new label and <value> is its value. |
|
In the |
For example, to add metadata about the region and environment to all time series and alerts related to user-defined projects, use the following example:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
externalLabels:
region: eu
environment: prod
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
See Preparing to configure the monitoring stack for steps to create monitoring config maps.
You can use pod topology spread constraints to control how the monitoring pods are spread across a network topology when OpenShift Container Platform pods are deployed in multiple availability zones.
Pod topology spread constraints are suitable for controlling pod scheduling within hierarchical topologies in which nodes are spread across different infrastructure levels, such as regions and zones within those regions. Additionally, by being able to schedule pods in different zones, you can improve network latency in certain scenarios.
You can configure pod topology spread constraints for all the pods deployed by the Cluster Monitoring Operator to control how pod replicas are scheduled to nodes across zones. This ensures that the pods are highly available and run more efficiently, because workloads are spread across nodes in different data centers or hierarchical infrastructure zones.
You can configure pod topology spread constraints for monitoring pods by using
the cluster-monitoring-config
or
the user-workload-monitoring-config
config map.
If you are configuring pods for core OpenShift Container Platform monitoring:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
ConfigMap
object.
If you are configuring pods for user-defined monitoring:
You have access to the cluster as a user with the cluster-admin
cluster role, or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
To configure pod topology spread constraints for core OpenShift Container Platform monitoring:
Edit the cluster-monitoring-config
config map in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add the following settings under the data/config.yaml
field to configure pod topology spread constraints:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
<component>: (1)
topologySpreadConstraints:
- maxSkew: <n> (2)
topologyKey: <key> (3)
whenUnsatisfiable: <value> (4)
labelSelector: (5)
<match_option>
1 | Specify a name of the component for which you want to set up pod topology spread constraints. |
2 | Specify a numeric value for maxSkew , which defines the degree to which pods are allowed to be unevenly distributed. |
3 | Specify a key of node labels for topologyKey .
Nodes that have a label with this key and identical values are considered to be in the same topology.
The scheduler tries to put a balanced number of pods into each domain. |
4 | Specify a value for whenUnsatisfiable .
Available options are DoNotSchedule and ScheduleAnyway .
Specify DoNotSchedule if you want the maxSkew value to define the maximum difference allowed between the number of matching pods in the target topology and the global minimum.
Specify ScheduleAnyway if you want the scheduler to still schedule the pod but to give higher priority to nodes that might reduce the skew. |
5 | Specify labelSelector to find matching pods.
Pods that match this label selector are counted to determine the number of pods in their corresponding topology domain. |
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
topologySpreadConstraints:
- maxSkew: 1
topologyKey: monitoring
whenUnsatisfiable: DoNotSchedule
labelSelector:
matchLabels:
app.kubernetes.io/name: prometheus
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
To configure pod topology spread constraints for user-defined monitoring:
Edit the user-workload-monitoring-config
config map in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Add the following settings under the data/config.yaml
field to configure pod topology spread constraints:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
<component>: (1)
topologySpreadConstraints:
- maxSkew: <n> (2)
topologyKey: <key> (3)
whenUnsatisfiable: <value> (4)
labelSelector: (5)
<match_option>
1 | Specify a name of the component for which you want to set up pod topology spread constraints. |
2 | Specify a numeric value for maxSkew , which defines the degree to which pods are allowed to be unevenly distributed. |
3 | Specify a key of node labels for topologyKey .
Nodes that have a label with this key and identical values are considered to be in the same topology.
The scheduler tries to put a balanced number of pods into each domain. |
4 | Specify a value for whenUnsatisfiable .
Available options are DoNotSchedule and ScheduleAnyway .
Specify DoNotSchedule if you want the maxSkew value to define the maximum difference allowed between the number of matching pods in the target topology and the global minimum.
Specify ScheduleAnyway if you want the scheduler to still schedule the pod but to give higher priority to nodes that might reduce the skew. |
5 | Specify labelSelector to find matching pods.
Pods that match this label selector are counted to determine the number of pods in their corresponding topology domain. |
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
thanosRuler:
topologySpreadConstraints:
- maxSkew: 1
topologyKey: monitoring
whenUnsatisfiable: ScheduleAnyway
labelSelector:
matchLabels:
app.kubernetes.io/name: thanos-ruler
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
You can configure the log level for Alertmanager, Prometheus Operator, Prometheus, Thanos Querier, and Thanos Ruler.
The following log levels can be applied to the relevant component in the
cluster-monitoring-config
and
user-workload-monitoring-config
ConfigMap
objects:
debug
. Log debug, informational, warning, and error messages.
info
. Log informational, warning, and error messages.
warn
. Log warning and error messages only.
error
. Log error messages only.
The default log level is info
.
If you are setting a log level for Alertmanager, Prometheus Operator, Prometheus, or Thanos Querier in the openshift-monitoring
project:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
ConfigMap
object.
If you are setting a log level for Prometheus Operator, Prometheus, or Thanos Ruler in the openshift-user-workload-monitoring
project:
You have access to the cluster as a user with the cluster-admin
cluster role, or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
Edit the ConfigMap
object:
To set a log level for a component in the openshift-monitoring
project:
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add logLevel: <log_level>
for a component under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
<component>: (1)
logLevel: <log_level> (2)
1 | The monitoring stack component for which you are setting a log level.
For default platform monitoring, available component values are prometheusK8s , alertmanagerMain , prometheusOperator , and thanosQuerier . |
2 | The log level to set for the component.
The available values are error , warn , info , and debug .
The default value is info . |
To set a log level for a component in the openshift-user-workload-monitoring
project:
Edit the user-workload-monitoring-config
ConfigMap
object in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Add logLevel: <log_level>
for a component under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
<component>: (1)
logLevel: <log_level> (2)
1 | The monitoring stack component for which you are setting a log level.
For user workload monitoring, available component values are alertmanager , prometheus , prometheusOperator , and thanosRuler . |
2 | The log level to apply to the component. The available values are error , warn , info , and debug . The default value is info . |
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
Confirm that the log-level has been applied by reviewing the deployment or pod configuration in the related project. The following example checks the log level in the prometheus-operator
deployment in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring get deploy prometheus-operator -o yaml | grep "log-level"
- --log-level=debug
Check that the pods for the component are running. The following example lists the status of pods in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring get pods
If an unrecognized |
You can configure Prometheus to write all queries that have been run by the engine to a log file. You can do so for default platform monitoring and for user-defined workload monitoring.
Because log rotation is not supported, only enable this feature temporarily when you need to troubleshoot an issue. After you finish troubleshooting, disable query logging by reverting the changes you made to the |
If you are enabling the query log file feature for Prometheus in the openshift-monitoring
project:
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
ConfigMap
object.
If you are enabling the query log file feature for Prometheus in the openshift-user-workload-monitoring
project:
You have access to the cluster as a user with the cluster-admin
cluster role, or as a user with the user-workload-monitoring-config-edit
role in the openshift-user-workload-monitoring
project.
A cluster administrator has enabled monitoring for user-defined projects.
You have installed the OpenShift CLI (oc
).
To set the query log file for Prometheus in the openshift-monitoring
project:
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add queryLogFile: <path>
for prometheusK8s
under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
queryLogFile: <path> (1)
1 | The full path to the file in which queries will be logged. |
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
Verify that the pods for the component are running. The following sample command lists the status of pods in the openshift-monitoring
project:
$ oc -n openshift-monitoring get pods
Read the query log:
$ oc -n openshift-monitoring exec prometheus-k8s-0 -- cat <path>
Revert the setting in the config map after you have examined the logged query information. |
To set the query log file for Prometheus in the openshift-user-workload-monitoring
project:
Edit the user-workload-monitoring-config
ConfigMap
object in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Add queryLogFile: <path>
for prometheus
under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
queryLogFile: <path> (1)
1 | The full path to the file in which queries will be logged. |
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
Verify that the pods for the component are running. The following example command lists the status of pods in the openshift-user-workload-monitoring
project:
$ oc -n openshift-user-workload-monitoring get pods
Read the query log:
$ oc -n openshift-user-workload-monitoring exec prometheus-user-workload-0 -- cat <path>
Revert the setting in the config map after you have examined the logged query information. |
See Preparing to configure the monitoring stack for steps to create monitoring config maps
See Enabling monitoring for user-defined projects for steps to enable user-defined monitoring.
For default platform monitoring in the openshift-monitoring
project, you can enable the Cluster Monitoring Operator (CMO) to log all queries run by Thanos Querier.
Because log rotation is not supported, only enable this feature temporarily when you need to troubleshoot an issue. After you finish troubleshooting, disable query logging by reverting the changes you made to the |
You have installed the OpenShift CLI (oc
).
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
ConfigMap
object.
You can enable query logging for Thanos Querier in the openshift-monitoring
project:
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add a thanosQuerier
section under data/config.yaml
and add values as shown in the following example:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
thanosQuerier:
enableRequestLogging: <value> (1)
logLevel: <value> (2)
1 | Set the value to true to enable logging and false to disable logging. The default value is false . |
2 | Set the value to debug , info , warn , or error . If no value exists for logLevel , the log level defaults to error . |
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
Verify that the Thanos Querier pods are running. The following sample command lists the status of pods in the openshift-monitoring
project:
$ oc -n openshift-monitoring get pods
Run a test query using the following sample commands as a model:
$ token=`oc create token prometheus-k8s -n openshift-monitoring`
$ oc -n openshift-monitoring exec -c prometheus prometheus-k8s-0 -- curl -k -H "Authorization: Bearer $token" 'https://thanos-querier.openshift-monitoring.svc:9091/api/v1/query?query=cluster_version'
Run the following command to read the query log:
$ oc -n openshift-monitoring logs <thanos_querier_pod_name> -c thanos-query
Because the |
After you examine the logged query information, disable query logging by changing the enableRequestLogging
value to false
in the config map.
See Preparing to configure the monitoring stack for steps to create monitoring config maps.
In default platform monitoring, you can configure the audit log level for the Prometheus Adapter.
You have installed the OpenShift CLI (oc
).
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
ConfigMap
object.
You can set an audit log level for the Prometheus Adapter in the default openshift-monitoring
project:
Edit the cluster-monitoring-config
ConfigMap
object in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add profile:
in the k8sPrometheusAdapter/audit
section under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
k8sPrometheusAdapter:
audit:
profile: <audit_log_level> (1)
1 | The audit log level to apply to the Prometheus Adapter. |
Set the audit log level by using one of the following values for the profile:
parameter:
None
: Do not log events.
Metadata
: Log only the metadata for the request, such as user, timestamp, and so forth. Do not log the request text and the response text. Metadata
is the default audit log level.
Request
: Log only the metadata and the request text but not the response text. This option does not apply for non-resource requests.
RequestResponse
: Log event metadata, request text, and response text. This option does not apply for non-resource requests.
Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
In the config map, under k8sPrometheusAdapter/audit/profile
, set the log level to Request
and save the file.
Confirm that the pods for the Prometheus Adapter are running. The following example lists the status of pods in the openshift-monitoring
project:
$ oc -n openshift-monitoring get pods
Confirm that the audit log level and audit log file path are correctly configured:
$ oc -n openshift-monitoring get deploy prometheus-adapter -o yaml
...
- --audit-policy-file=/etc/audit/request-profile.yaml
- --audit-log-path=/var/log/adapter/audit.log
Confirm that the correct log level has been applied in the prometheus-adapter
deployment in the openshift-monitoring
project:
$ oc -n openshift-monitoring exec deploy/prometheus-adapter -c prometheus-adapter -- cat /etc/audit/request-profile.yaml
"apiVersion": "audit.k8s.io/v1"
"kind": "Policy"
"metadata":
"name": "Request"
"omitStages":
- "RequestReceived"
"rules":
- "level": "Request"
If you enter an unrecognized |
Review the audit log for the Prometheus Adapter:
$ oc -n openshift-monitoring exec -c <prometheus_adapter_pod_name> -- cat /var/log/adapter/audit.log
See Preparing to configure the monitoring stack for steps to create monitoring config maps.
A local Alertmanager that routes alerts from Prometheus instances is enabled by default in the openshift-monitoring
project of the OpenShift Container Platform monitoring stack.
If you do not need the local Alertmanager, you can disable it by configuring the cluster-monitoring-config
config map in the openshift-monitoring
project.
You have access to the cluster as a user with the cluster-admin
cluster role.
You have created the cluster-monitoring-config
config map.
You have installed the OpenShift CLI (oc
).
Edit the cluster-monitoring-config
config map in the openshift-monitoring
project:
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
Add enabled: false
for the alertmanagerMain
component under data/config.yaml
:
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
alertmanagerMain:
enabled: false
Save the file to apply the changes. The Alertmanager instance is disabled automatically when you apply the change.