×

When the Service Mesh Operator deploys the ServiceMeshControlPlane resource, it can also create the resources for distributed tracing. Service Mesh uses Jaeger for distributed tracing.

  • Jaeger does not use FIPS validated cryptographic modules.

  • Starting with Red Hat OpenShift Service Mesh 2.5, Red Hat OpenShift distributed tracing platform (Jaeger) is deprecated and will be removed in a future release. Red Hat will provide bug fixes and support for this feature during the current release lifecycle, but this feature will no longer receive enhancements and will be removed. As an alternative to Red Hat OpenShift distributed tracing platform (Jaeger), you can use Red Hat OpenShift distributed tracing platform (Tempo) instead.

Enabling and disabling tracing

You enable distributed tracing by specifying a tracing type and a sampling rate in the ServiceMeshControlPlane resource.

Default all-in-one Jaeger parameters
apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  version: v2.6
  tracing:
    sampling: 100
    type: Jaeger

In Red Hat OpenShift Service Mesh 2.6, the tracing type Jaeger is deprecated and disabled by default.

In Red Hat OpenShift Service Mesh 2.5 and earlier, the tracing type Jaeger is enabled by default. To disable Jaeger tracing, set the spec.tracing.type parameter of the ServiceMeshControlPlane resource to None.

The sampling rate determines how often the Envoy proxy generates a trace. You can use the sampling rate option to control what percentage of requests get reported to your tracing system. You can configure this setting based upon your traffic in the mesh and the amount of tracing data you want to collect. You configure sampling as a scaled integer representing 0.01% increments. For example, setting the value to 10 samples 0.1% of traces, setting the value to 500 samples 5% of traces, and a setting of 10000 samples 100% of traces.

The SMCP sampling configuration option controls the Envoy sampling rate. You configure the Jaeger trace sampling rate in the Jaeger custom resource.

Specifying Jaeger configuration in the SMCP

You configure Jaeger under the addons section of the ServiceMeshControlPlane resource. However, there are some limitations to what you can configure in the SMCP.

When the SMCP passes configuration information to the Red Hat OpenShift distributed tracing platform (Jaeger) Operator, it triggers one of three deployment strategies: allInOne, production, or streaming.

Deploying the distributed tracing platform

The distributed tracing platform (Jaeger) has predefined deployment strategies. You specify a deployment strategy in the Jaeger custom resource (CR) file. When you create an instance of the distributed tracing platform (Jaeger), the Red Hat OpenShift distributed tracing platform (Jaeger) Operator uses this configuration file to create the objects necessary for the deployment.

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator currently supports the following deployment strategies:

  • allInOne (default) - This strategy is intended for development, testing, and demo purposes and it is not for production use. The main back-end components, Agent, Collector, and Query service, are all packaged into a single executable, which is configured (by default) to use in-memory storage. You can configure this deployment strategy in the SMCP.

    In-memory storage is not persistent, which means that if the Jaeger instance shuts down, restarts, or is replaced, your trace data will be lost. And in-memory storage cannot be scaled, since each pod has its own memory. For persistent storage, you must use the production or streaming strategies, which use Elasticsearch as the default storage.

  • production - The production strategy is intended for production environments, where long term storage of trace data is important, and a more scalable and highly available architecture is required. Each back-end component is therefore deployed separately. The Agent can be injected as a sidecar on the instrumented application. The Query and Collector services are configured with a supported storage type, which is currently Elasticsearch. Multiple instances of each of these components can be provisioned as required for performance and resilience purposes. You can configure this deployment strategy in the SMCP, but in order to be fully customized, you must specify your configuration in the Jaeger CR and link that to the SMCP.

  • streaming - The streaming strategy is designed to augment the production strategy by providing a streaming capability that sits between the Collector and the Elasticsearch back-end storage. This provides the benefit of reducing the pressure on the back-end storage, under high load situations, and enables other trace post-processing capabilities to tap into the real-time span data directly from the streaming platform (AMQ Streams/ Kafka). You cannot configure this deployment strategy in the SMCP; you must configure a Jaeger CR and link that to the SMCP.

The streaming strategy requires an additional Red Hat subscription for AMQ Streams.

Default distributed tracing platform (Jaeger) deployment

If you do not specify Jaeger configuration options, the ServiceMeshControlPlane resource will use the allInOne Jaeger deployment strategy by default. When using the default allInOne deployment strategy, set spec.addons.jaeger.install.storage.type to Memory. You can accept the defaults or specify additional configuration options under install.

Control plane default Jaeger parameters (Memory)
apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  version: v2.6
  tracing:
    sampling: 10000
    type: Jaeger
  addons:
    jaeger:
      name: jaeger
      install:
        storage:
          type: Memory

Production distributed tracing platform (Jaeger) deployment (minimal)

To use the default settings for the production deployment strategy, set spec.addons.jaeger.install.storage.type to Elasticsearch and specify additional configuration options under install. Note that the SMCP only supports configuring Elasticsearch resources and image name.

Control plane default Jaeger parameters (Elasticsearch)
apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  version: v2.6
  tracing:
    sampling: 10000
    type: Jaeger
  addons:
    jaeger:
      name: jaeger  #name of Jaeger CR
      install:
        storage:
          type: Elasticsearch
        ingress:
          enabled: true
  runtime:
    components:
      tracing.jaeger.elasticsearch: # only supports resources and image name
        container:
          resources: {}

Production distributed tracing platform (Jaeger) deployment (fully customized)

The SMCP supports only minimal Elasticsearch parameters. To fully customize your production environment and access all of the Elasticsearch configuration parameters, use the Jaeger custom resource (CR) to configure Jaeger.

Create and configure your Jaeger instance and set spec.addons.jaeger.name to the name of the Jaeger instance, in this example: MyJaegerInstance.

Control plane with linked Jaeger production CR
apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  version: v2.6
  tracing:
    sampling: 1000
    type: Jaeger
  addons:
    jaeger:
      name: MyJaegerInstance #name of Jaeger CR
      install:
        storage:
          type: Elasticsearch
        ingress:
          enabled: true

Streaming Jaeger deployment

To use the streaming deployment strategy, you create and configure your Jaeger instance first, then set spec.addons.jaeger.name to the name of the Jaeger instance, in this example: MyJaegerInstance.

Control plane with linked Jaeger streaming CR
apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  version: v2.6
  tracing:
    sampling: 1000
    type: Jaeger
  addons:
    jaeger:
      name: MyJaegerInstance  #name of Jaeger CR

Specifying Jaeger configuration in a Jaeger custom resource

You can fully customize your Jaeger deployment by configuring Jaeger in the Jaeger custom resource (CR) rather than in the ServiceMeshControlPlane (SMCP) resource. This configuration is sometimes referred to as an "external Jaeger" since the configuration is specified outside of the SMCP.

You must deploy the SMCP and Jaeger CR in the same namespace. For example, istio-system.

You can configure and deploy a standalone Jaeger instance and then specify the name of the Jaeger resource as the value for spec.addons.jaeger.name in the SMCP resource. If a Jaeger CR matching the value of name exists, the Service Mesh control plane will use the existing installation. This approach lets you fully customize your Jaeger configuration.

Deployment best practices

  • Red Hat OpenShift distributed tracing platform instance names must be unique. If you want to have multiple Red Hat OpenShift distributed tracing platform (Jaeger) instances and are using sidecar injected agents, then the Red Hat OpenShift distributed tracing platform (Jaeger) instances should have unique names, and the injection annotation should explicitly specify the Red Hat OpenShift distributed tracing platform (Jaeger) instance name the tracing data should be reported to.

  • If you have a multitenant implementation and tenants are separated by namespaces, deploy a Red Hat OpenShift distributed tracing platform (Jaeger) instance to each tenant namespace.

For information about configuring persistent storage, see Understanding persistent storage and the appropriate configuration topic for your chosen storage option.

Configuring distributed tracing security for service mesh

The distributed tracing platform (Jaeger) uses OAuth for default authentication. However Red Hat OpenShift Service Mesh uses a secret called htpasswd to facilitate communication between dependent services such as Grafana, Kiali, and the distributed tracing platform (Jaeger). When you configure your distributed tracing platform (Jaeger) in the ServiceMeshControlPlane the Service Mesh automatically configures security settings to use htpasswd.

If you are specifying your distributed tracing platform (Jaeger) configuration in a Jaeger custom resource, you must manually configure the htpasswd settings and ensure the htpasswd secret is mounted into your Jaeger instance so that Kiali can communicate with it.

Configuring distributed tracing security for service mesh from the web console

You can modify the Jaeger resource to configure distributed tracing platform (Jaeger) security for use with Service Mesh in the web console.

Prerequisites
  • You have access to the cluster as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.

  • The Red Hat OpenShift Service Mesh Operator must be installed.

  • The ServiceMeshControlPlane deployed to the cluster.

  • You have access to the OpenShift Container Platform web console.

Procedure
  1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

  2. Navigate to OperatorsInstalled Operators.

  3. Click the Project menu and select the project where your ServiceMeshControlPlane resource is deployed from the list, for example istio-system.

  4. Click the Red Hat OpenShift distributed tracing platform (Jaeger) Operator.

  5. On the Operator Details page, click the Jaeger tab.

  6. Click the name of your Jaeger instance.

  7. On the Jaeger details page, click the YAML tab to modify your configuration.

  8. Edit the Jaeger custom resource file to add the htpasswd configuration as shown in the following example.

    • spec.ingress.openshift.htpasswdFile

    • spec.volumes

    • spec.volumeMounts

      Example Jaeger resource showing htpasswd configuration
      apiVersion: jaegertracing.io/v1
      kind: Jaeger
      spec:
        ingress:
          enabled: true
          openshift:
            htpasswdFile: /etc/proxy/htpasswd/auth
            sar: '{"namespace": "istio-system", "resource": "pods", "verb": "get"}'
          options: {}
          resources: {}
          security: oauth-proxy
        volumes:
          - name: secret-htpasswd
            secret:
              secretName: htpasswd
          - configMap:
              defaultMode: 420
              items:
                - key: ca-bundle.crt
                  path: tls-ca-bundle.pem
              name: trusted-ca-bundle
              optional: true
            name: trusted-ca-bundle
        volumeMounts:
          - mountPath: /etc/proxy/htpasswd
            name: secret-htpasswd
          - mountPath: /etc/pki/ca-trust/extracted/pem/
            name: trusted-ca-bundle
            readOnly: true
      # ...
  9. Click Save.

Configuring distributed tracing security for service mesh from the command line

You can modify the Jaeger resource to configure distributed tracing platform (Jaeger) security for use with Service Mesh from the command line by running the OpenShift CLI (oc).

Prerequisites
  • You have access to the cluster as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.

  • The Red Hat OpenShift Service Mesh Operator must be installed.

  • The ServiceMeshControlPlane deployed to the cluster.

  • You have access to the OpenShift CLI (oc) that matches your OpenShift Container Platform version.

Procedure
  1. Log in to the OpenShift CLI (oc) as a user with the cluster-admin role by running the following command. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.

    $ oc login https://<HOSTNAME>:6443
  2. Change to the project where you installed the control plane, for example istio-system, by entering the following command:

    $ oc project istio-system
  3. Run the following command to edit the Jaeger custom resource file:

    $ oc edit -n openshift-distributed-tracing -f jaeger.yaml
  4. Edit the Jaeger custom resource file to add the htpasswd configuration as shown in the following example.

    • spec.ingress.openshift.htpasswdFile

    • spec.volumes

    • spec.volumeMounts

      Example Jaeger resource showing htpasswd configuration
      apiVersion: jaegertracing.io/v1
      kind: Jaeger
      spec:
        ingress:
          enabled: true
          openshift:
            htpasswdFile: /etc/proxy/htpasswd/auth
            sar: '{"namespace": "istio-system", "resource": "pods", "verb": "get"}'
          options: {}
          resources: {}
          security: oauth-proxy
        volumes:
          - name: secret-htpasswd
            secret:
              secretName: htpasswd
          - configMap:
              defaultMode: 420
              items:
                - key: ca-bundle.crt
                  path: tls-ca-bundle.pem
              name: trusted-ca-bundle
              optional: true
            name: trusted-ca-bundle
        volumeMounts:
          - mountPath: /etc/proxy/htpasswd
            name: secret-htpasswd
          - mountPath: /etc/pki/ca-trust/extracted/pem/
            name: trusted-ca-bundle
            readOnly: true
  5. Run the following command to watch the progress of the pod deployment:

    $ oc get pods -n openshift-distributed-tracing

Distributed tracing default configuration options

The Jaeger custom resource (CR) defines the architecture and settings to be used when creating the distributed tracing platform (Jaeger) resources. You can modify these parameters to customize your distributed tracing platform (Jaeger) implementation to your business needs.

Generic YAML example of the Jaeger CR
apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: name
spec:
  strategy: <deployment_strategy>
  allInOne:
    options: {}
    resources: {}
  agent:
    options: {}
    resources: {}
  collector:
    options: {}
    resources: {}
  sampling:
    options: {}
  storage:
    type:
    options: {}
  query:
    options: {}
    resources: {}
  ingester:
    options: {}
    resources: {}
  options: {}
Table 1. Jaeger parameters
Parameter Description Values Default value

apiVersion:

API version to use when creating the object.

jaegertracing.io/v1

jaegertracing.io/v1

kind:

Defines the kind of Kubernetes object to create.

jaeger

metadata:

Data that helps uniquely identify the object, including a name string, UID, and optional namespace.

OpenShift Container Platform automatically generates the UID and completes the namespace with the name of the project where the object is created.

name:

Name for the object.

The name of your distributed tracing platform (Jaeger) instance.

jaeger-all-in-one-inmemory

spec:

Specification for the object to be created.

Contains all of the configuration parameters for your distributed tracing platform (Jaeger) instance. When a common definition for all Jaeger components is required, it is defined under the spec node. When the definition relates to an individual component, it is placed under the spec/<component> node.

N/A

strategy:

Jaeger deployment strategy

allInOne, production, or streaming

allInOne

allInOne:

Because the allInOne image deploys the Agent, Collector, Query, Ingester, and Jaeger UI in a single pod, configuration for this deployment must nest component configuration under the allInOne parameter.

agent:

Configuration options that define the Agent.

collector:

Configuration options that define the Jaeger Collector.

sampling:

Configuration options that define the sampling strategies for tracing.

storage:

Configuration options that define the storage. All storage-related options must be placed under storage, rather than under the allInOne or other component options.

query:

Configuration options that define the Query service.

ingester:

Configuration options that define the Ingester service.

The following example YAML is the minimum required to create a Red Hat OpenShift distributed tracing platform (Jaeger) deployment using the default settings.

Example minimum required dist-tracing-all-in-one.yaml
apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: jaeger-all-in-one-inmemory

Jaeger Collector configuration options

The Jaeger Collector is the component responsible for receiving the spans that were captured by the tracer and writing them to persistent Elasticsearch storage when using the production strategy, or to AMQ Streams when using the streaming strategy.

The Collectors are stateless and thus many instances of Jaeger Collector can be run in parallel. Collectors require almost no configuration, except for the location of the Elasticsearch cluster.

Table 2. Parameters used by the Operator to define the Jaeger Collector
Parameter Description Values
collector:
  replicas:

Specifies the number of Collector replicas to create.

Integer, for example, 5

Table 3. Configuration parameters passed to the Collector
Parameter Description Values
spec:
 collector:
  options: {}

Configuration options that define the Jaeger Collector.

options:
  collector:
    num-workers:

The number of workers pulling from the queue.

Integer, for example, 50

options:
  collector:
    queue-size:

The size of the Collector queue.

Integer, for example, 2000

options:
  kafka:
    producer:
      topic: jaeger-spans

The topic parameter identifies the Kafka configuration used by the Collector to produce the messages, and the Ingester to consume the messages.

Label for the producer.

options:
  kafka:
    producer:
      brokers: my-cluster-kafka-brokers.kafka:9092

Identifies the Kafka configuration used by the Collector to produce the messages. If brokers are not specified, and you have AMQ Streams 1.4.0+ installed, the Red Hat OpenShift distributed tracing platform (Jaeger) Operator will self-provision Kafka.

options:
  log-level:

Logging level for the Collector.

Possible values: debug, info, warn, error, fatal, panic.

options:
  otlp:
    enabled: true
    grpc:
      host-port: 4317
      max-connection-age: 0s
      max-connection-age-grace: 0s
      max-message-size: 4194304
      tls:
        enabled: false
        cert: /path/to/cert.crt
        cipher-suites: "TLS_AES_256_GCM_SHA384,TLS_CHACHA20_POLY1305_SHA256"
        client-ca: /path/to/cert.ca
        reload-interval: 0s
        min-version: 1.2
        max-version: 1.3

To accept OTLP/gRPC, explicitly enable the otlp. All the other options are optional.

options:
  otlp:
    enabled: true
    http:
      cors:
        allowed-headers: [<header-name>[, <header-name>]*]
        allowed-origins: *
      host-port: 4318
      max-connection-age: 0s
      max-connection-age-grace: 0s
      max-message-size: 4194304
      read-timeout: 0s
      read-header-timeout: 2s
      idle-timeout: 0s
      tls:
        enabled: false
        cert: /path/to/cert.crt
        cipher-suites: "TLS_AES_256_GCM_SHA384,TLS_CHACHA20_POLY1305_SHA256"
        client-ca: /path/to/cert.ca
        reload-interval: 0s
        min-version: 1.2
        max-version: 1.3

To accept OTLP/HTTP, explicitly enable the otlp. All the other options are optional.

Distributed tracing sampling configuration options

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator can be used to define sampling strategies that will be supplied to tracers that have been configured to use a remote sampler.

While all traces are generated, only a few are sampled. Sampling a trace marks the trace for further processing and storage.

This is not relevant if a trace was started by the Envoy proxy, as the sampling decision is made there. The Jaeger sampling decision is only relevant when the trace is started by an application using the client.

When a service receives a request that contains no trace context, the client starts a new trace, assigns it a random trace ID, and makes a sampling decision based on the currently installed sampling strategy. The sampling decision propagates to all subsequent requests in the trace so that other services are not making the sampling decision again.

distributed tracing platform (Jaeger) libraries support the following samplers:

  • Probabilistic - The sampler makes a random sampling decision with the probability of sampling equal to the value of the sampling.param property. For example, using sampling.param=0.1 samples approximately 1 in 10 traces.

  • Rate Limiting - The sampler uses a leaky bucket rate limiter to ensure that traces are sampled with a certain constant rate. For example, using sampling.param=2.0 samples requests with the rate of 2 traces per second.

Table 4. Jaeger sampling options
Parameter Description Values Default value
spec:
 sampling:
  options: {}
    default_strategy:
    service_strategy:

Configuration options that define the sampling strategies for tracing.

If you do not provide configuration, the Collectors will return the default probabilistic sampling policy with 0.001 (0.1%) probability for all services.

default_strategy:
  type:
service_strategy:
  type:

Sampling strategy to use. See descriptions above.

Valid values are probabilistic, and ratelimiting.

probabilistic

default_strategy:
  param:
service_strategy:
  param:

Parameters for the selected sampling strategy.

Decimal and integer values (0, .1, 1, 10)

1

This example defines a default sampling strategy that is probabilistic, with a 50% chance of the trace instances being sampled.

Probabilistic sampling example
apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: with-sampling
spec:
  sampling:
    options:
      default_strategy:
        type: probabilistic
        param: 0.5
      service_strategies:
        - service: alpha
          type: probabilistic
          param: 0.8
          operation_strategies:
            - operation: op1
              type: probabilistic
              param: 0.2
            - operation: op2
              type: probabilistic
              param: 0.4
        - service: beta
          type: ratelimiting
          param: 5

If there are no user-supplied configurations, the distributed tracing platform (Jaeger) uses the following settings:

Default sampling
spec:
  sampling:
    options:
      default_strategy:
        type: probabilistic
        param: 1

Distributed tracing storage configuration options

You configure storage for the Collector, Ingester, and Query services under spec.storage. Multiple instances of each of these components can be provisioned as required for performance and resilience purposes.

Table 5. General storage parameters used by the Red Hat OpenShift distributed tracing platform (Jaeger) Operator to define distributed tracing storage
Parameter Description Values Default value
spec:
  storage:
    type:

Type of storage to use for the deployment.

memory or elasticsearch. Memory storage is only appropriate for development, testing, demonstrations, and proof of concept environments as the data does not persist if the pod is shut down. For production environments distributed tracing platform (Jaeger) supports Elasticsearch for persistent storage.

memory

storage:
  secretname:

Name of the secret, for example tracing-secret.

N/A

storage:
  options: {}

Configuration options that define the storage.

Table 6. Elasticsearch index cleaner parameters
Parameter Description Values Default value
storage:
  esIndexCleaner:
    enabled:

When using Elasticsearch storage, by default a job is created to clean old traces from the index. This parameter enables or disables the index cleaner job.

true/ false

true

storage:
  esIndexCleaner:
    numberOfDays:

Number of days to wait before deleting an index.

Integer value

7

storage:
  esIndexCleaner:
    schedule:

Defines the schedule for how often to clean the Elasticsearch index.

Cron expression

"55 23 * * *"

Auto-provisioning an Elasticsearch instance

When you deploy a Jaeger custom resource, the Red Hat OpenShift distributed tracing platform (Jaeger) Operator uses the OpenShift Elasticsearch Operator to create an Elasticsearch cluster based on the configuration provided in the storage section of the custom resource file. The Red Hat OpenShift distributed tracing platform (Jaeger) Operator will provision Elasticsearch if the following configurations are set:

  • spec.storage:type is set to elasticsearch

  • spec.storage.elasticsearch.doNotProvision set to false

  • spec.storage.options.es.server-urls is not defined, that is, there is no connection to an Elasticsearch instance that was not provisioned by the OpenShift Elasticsearch Operator.

When provisioning Elasticsearch, the Red Hat OpenShift distributed tracing platform (Jaeger) Operator sets the Elasticsearch custom resource name to the value of spec.storage.elasticsearch.name from the Jaeger custom resource. If you do not specify a value for spec.storage.elasticsearch.name, the Operator uses elasticsearch.

Restrictions
  • You can have only one distributed tracing platform (Jaeger) with self-provisioned Elasticsearch instance per namespace. The Elasticsearch cluster is meant to be dedicated for a single distributed tracing platform (Jaeger) instance.

  • There can be only one Elasticsearch per namespace.

If you already have installed Elasticsearch as part of OpenShift Logging, the Red Hat OpenShift distributed tracing platform (Jaeger) Operator can use the installed OpenShift Elasticsearch Operator to provision storage.

The following configuration parameters are for a self-provisioned Elasticsearch instance, that is an instance created by the Red Hat OpenShift distributed tracing platform (Jaeger) Operator using the OpenShift Elasticsearch Operator. You specify configuration options for self-provisioned Elasticsearch under spec:storage:elasticsearch in your configuration file.

Table 7. Elasticsearch resource configuration parameters
Parameter Description Values Default value
elasticsearch:
  properties:
    doNotProvision:

Use to specify whether or not an Elasticsearch instance should be provisioned by the Red Hat OpenShift distributed tracing platform (Jaeger) Operator.

true/false

true

elasticsearch:
  properties:
    name:

Name of the Elasticsearch instance. The Red Hat OpenShift distributed tracing platform (Jaeger) Operator uses the Elasticsearch instance specified in this parameter to connect to Elasticsearch.

string

elasticsearch

elasticsearch:
  nodeCount:

Number of Elasticsearch nodes. For high availability use at least 3 nodes. Do not use 2 nodes as “split brain” problem can happen.

Integer value. For example, Proof of concept = 1, Minimum deployment =3

3

elasticsearch:
  resources:
    requests:
      cpu:

Number of central processing units for requests, based on your environment’s configuration.

Specified in cores or millicores, for example, 200m, 0.5, 1. For example, Proof of concept = 500m, Minimum deployment =1

1

elasticsearch:
  resources:
    requests:
      memory:

Available memory for requests, based on your environment’s configuration.

Specified in bytes, for example, 200Ki, 50Mi, 5Gi. For example, Proof of concept = 1Gi, Minimum deployment = 16Gi*

16Gi

elasticsearch:
  resources:
    limits:
      cpu:

Limit on number of central processing units, based on your environment’s configuration.

Specified in cores or millicores, for example, 200m, 0.5, 1. For example, Proof of concept = 500m, Minimum deployment =1

elasticsearch:
  resources:
    limits:
      memory:

Available memory limit based on your environment’s configuration.

Specified in bytes, for example, 200Ki, 50Mi, 5Gi. For example, Proof of concept = 1Gi, Minimum deployment = 16Gi*

elasticsearch:
  redundancyPolicy:

Data replication policy defines how Elasticsearch shards are replicated across data nodes in the cluster. If not specified, the Red Hat OpenShift distributed tracing platform (Jaeger) Operator automatically determines the most appropriate replication based on number of nodes.

ZeroRedundancy(no replica shards), SingleRedundancy(one replica shard), MultipleRedundancy(each index is spread over half of the Data nodes), FullRedundancy (each index is fully replicated on every Data node in the cluster).

elasticsearch:
  useCertManagement:

Use to specify whether or not distributed tracing platform (Jaeger) should use the certificate management feature of the OpenShift Elasticsearch Operator. This feature was added to {logging-title} 5.2 in OpenShift Container Platform 4.7 and is the preferred setting for new Jaeger deployments.

true/false

true

Each Elasticsearch node can operate with a lower memory setting though this is NOT recommended for production deployments. For production use, you must have no less than 16 Gi allocated to each pod by default, but preferably allocate as much as you can, up to 64 Gi per pod.

Production storage example
apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: simple-prod
spec:
  strategy: production
  storage:
    type: elasticsearch
    elasticsearch:
      nodeCount: 3
      resources:
        requests:
          cpu: 1
          memory: 16Gi
        limits:
          memory: 16Gi
Storage example with persistent storage:
apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: simple-prod
spec:
  strategy: production
  storage:
    type: elasticsearch
    elasticsearch:
      nodeCount: 1
      storage: (1)
        storageClassName: gp2
        size: 5Gi
      resources:
        requests:
          cpu: 200m
          memory: 4Gi
        limits:
          memory: 4Gi
      redundancyPolicy: ZeroRedundancy
1 Persistent storage configuration. In this case AWS gp2 with 5Gi size. When no value is specified, distributed tracing platform (Jaeger) uses emptyDir. The OpenShift Elasticsearch Operator provisions PersistentVolumeClaim and PersistentVolume which are not removed with distributed tracing platform (Jaeger) instance. You can mount the same volumes if you create a distributed tracing platform (Jaeger) instance with the same name and namespace.

Connecting to an existing Elasticsearch instance

You can use an existing Elasticsearch cluster for storage with distributed tracing platform. An existing Elasticsearch cluster, also known as an external Elasticsearch instance, is an instance that was not installed by the Red Hat OpenShift distributed tracing platform (Jaeger) Operator or by the OpenShift Elasticsearch Operator.

When you deploy a Jaeger custom resource, the Red Hat OpenShift distributed tracing platform (Jaeger) Operator will not provision Elasticsearch if the following configurations are set:

  • spec.storage.elasticsearch.doNotProvision set to true

  • spec.storage.options.es.server-urls has a value

  • spec.storage.elasticsearch.name has a value, or if the Elasticsearch instance name is elasticsearch.

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator uses the Elasticsearch instance specified in spec.storage.elasticsearch.name to connect to Elasticsearch.

Restrictions
  • You cannot share or reuse a OpenShift Container Platform logging Elasticsearch instance with distributed tracing platform (Jaeger). The Elasticsearch cluster is meant to be dedicated for a single distributed tracing platform (Jaeger) instance.

The following configuration parameters are for an already existing Elasticsearch instance, also known as an external Elasticsearch instance. In this case, you specify configuration options for Elasticsearch under spec:storage:options:es in your custom resource file.

Table 8. General ES configuration parameters
Parameter Description Values Default value
es:
  server-urls:

URL of the Elasticsearch instance.

The fully-qualified domain name of the Elasticsearch server.

es:
  max-doc-count:

The maximum document count to return from an Elasticsearch query. This will also apply to aggregations. If you set both es.max-doc-count and es.max-num-spans, Elasticsearch will use the smaller value of the two.

10000

es:
  max-num-spans:

[Deprecated - Will be removed in a future release, use es.max-doc-count instead.] The maximum number of spans to fetch at a time, per query, in Elasticsearch. If you set both es.max-num-spans and es.max-doc-count, Elasticsearch will use the smaller value of the two.

10000

es:
  max-span-age:

The maximum lookback for spans in Elasticsearch.

72h0m0s

es:
  sniffer:

The sniffer configuration for Elasticsearch. The client uses the sniffing process to find all nodes automatically. Disabled by default.

true/ false

false

es:
  sniffer-tls-enabled:

Option to enable TLS when sniffing an Elasticsearch Cluster. The client uses the sniffing process to find all nodes automatically. Disabled by default

true/ false

false

es:
  timeout:

Timeout used for queries. When set to zero there is no timeout.

0s

es:
  username:

The username required by Elasticsearch. The basic authentication also loads CA if it is specified. See also es.password.

es:
  password:

The password required by Elasticsearch. See also, es.username.

es:
  version:

The major Elasticsearch version. If not specified, the value will be auto-detected from Elasticsearch.

0

Table 9. ES data replication parameters
Parameter Description Values Default value
es:
  num-replicas:

The number of replicas per index in Elasticsearch.

1

es:
  num-shards:

The number of shards per index in Elasticsearch.

5

Table 10. ES index configuration parameters
Parameter Description Values Default value
es:
  create-index-templates:

Automatically create index templates at application startup when set to true. When templates are installed manually, set to false.

true/ false

true

es:
  index-prefix:

Optional prefix for distributed tracing platform (Jaeger) indices. For example, setting this to "production" creates indices named "production-tracing-*".

Table 11. ES bulk processor configuration parameters
Parameter Description Values Default value
es:
  bulk:
    actions:

The number of requests that can be added to the queue before the bulk processor decides to commit updates to disk.

1000

es:
  bulk:
    flush-interval:

A time.Duration after which bulk requests are committed, regardless of other thresholds. To disable the bulk processor flush interval, set this to zero.

200ms

es:
  bulk:
    size:

The number of bytes that the bulk requests can take up before the bulk processor decides to commit updates to disk.

5000000

es:
  bulk:
    workers:

The number of workers that are able to receive and commit bulk requests to Elasticsearch.

1

Table 12. ES TLS configuration parameters
Parameter Description Values Default value
es:
  tls:
    ca:

Path to a TLS Certification Authority (CA) file used to verify the remote servers.

Will use the system truststore by default.

es:
  tls:
    cert:

Path to a TLS Certificate file, used to identify this process to the remote servers.

es:
  tls:
    enabled:

Enable transport layer security (TLS) when talking to the remote servers. Disabled by default.

true/ false

false

es:
  tls:
    key:

Path to a TLS Private Key file, used to identify this process to the remote servers.

es:
  tls:
    server-name:

Override the expected TLS server name in the certificate of the remote servers.

es:
  token-file:

Path to a file containing the bearer token. This flag also loads the Certification Authority (CA) file if it is specified.

Table 13. ES archive configuration parameters
Parameter Description Values Default value
es-archive:
  bulk:
    actions:

The number of requests that can be added to the queue before the bulk processor decides to commit updates to disk.

0

es-archive:
  bulk:
    flush-interval:

A time.Duration after which bulk requests are committed, regardless of other thresholds. To disable the bulk processor flush interval, set this to zero.

0s

es-archive:
  bulk:
    size:

The number of bytes that the bulk requests can take up before the bulk processor decides to commit updates to disk.

0

es-archive:
  bulk:
    workers:

The number of workers that are able to receive and commit bulk requests to Elasticsearch.

0

es-archive:
  create-index-templates:

Automatically create index templates at application startup when set to true. When templates are installed manually, set to false.

true/ false

false

es-archive:
  enabled:

Enable extra storage.

true/ false

false

es-archive:
  index-prefix:

Optional prefix for distributed tracing platform (Jaeger) indices. For example, setting this to "production" creates indices named "production-tracing-*".

es-archive:
  max-doc-count:

The maximum document count to return from an Elasticsearch query. This will also apply to aggregations.

0

es-archive:
  max-num-spans:

[Deprecated - Will be removed in a future release, use es-archive.max-doc-count instead.] The maximum number of spans to fetch at a time, per query, in Elasticsearch.

0

es-archive:
  max-span-age:

The maximum lookback for spans in Elasticsearch.

0s

es-archive:
  num-replicas:

The number of replicas per index in Elasticsearch.

0

es-archive:
  num-shards:

The number of shards per index in Elasticsearch.

0

es-archive:
  password:

The password required by Elasticsearch. See also, es.username.

es-archive:
  server-urls:

The comma-separated list of Elasticsearch servers. Must be specified as fully qualified URLs, for example, http://localhost:9200.

es-archive:
  sniffer:

The sniffer configuration for Elasticsearch. The client uses the sniffing process to find all nodes automatically. Disabled by default.

true/ false

false

es-archive:
  sniffer-tls-enabled:

Option to enable TLS when sniffing an Elasticsearch Cluster. The client uses the sniffing process to find all nodes automatically. Disabled by default.

true/ false

false

es-archive:
  timeout:

Timeout used for queries. When set to zero there is no timeout.

0s

es-archive:
  tls:
    ca:

Path to a TLS Certification Authority (CA) file used to verify the remote servers.

Will use the system truststore by default.

es-archive:
  tls:
    cert:

Path to a TLS Certificate file, used to identify this process to the remote servers.

es-archive:
  tls:
    enabled:

Enable transport layer security (TLS) when talking to the remote servers. Disabled by default.

true/ false

false

es-archive:
  tls:
    key:

Path to a TLS Private Key file, used to identify this process to the remote servers.

es-archive:
  tls:
    server-name:

Override the expected TLS server name in the certificate of the remote servers.

es-archive:
  token-file:

Path to a file containing the bearer token. This flag also loads the Certification Authority (CA) file if it is specified.

es-archive:
  username:

The username required by Elasticsearch. The basic authentication also loads CA if it is specified. See also es-archive.password.

es-archive:
  version:

The major Elasticsearch version. If not specified, the value will be auto-detected from Elasticsearch.

0

Storage example with volume mounts
apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: simple-prod
spec:
  strategy: production
  storage:
    type: elasticsearch
    options:
      es:
        server-urls: https://quickstart-es-http.default.svc:9200
        index-prefix: my-prefix
        tls:
          ca: /es/certificates/ca.crt
    secretName: tracing-secret
  volumeMounts:
    - name: certificates
      mountPath: /es/certificates/
      readOnly: true
  volumes:
    - name: certificates
      secret:
        secretName: quickstart-es-http-certs-public

The following example shows a Jaeger CR using an external Elasticsearch cluster with TLS CA certificate mounted from a volume and user/password stored in a secret.

External Elasticsearch example
apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: simple-prod
spec:
  strategy: production
  storage:
    type: elasticsearch
    options:
      es:
        server-urls: https://quickstart-es-http.default.svc:9200 (1)
        index-prefix: my-prefix
        tls: (2)
          ca: /es/certificates/ca.crt
    secretName: tracing-secret (3)
  volumeMounts: (4)
    - name: certificates
      mountPath: /es/certificates/
      readOnly: true
  volumes:
    - name: certificates
      secret:
        secretName: quickstart-es-http-certs-public
1 URL to Elasticsearch service running in default namespace.
2 TLS configuration. In this case only CA certificate, but it can also contain es.tls.key and es.tls.cert when using mutual TLS.
3 Secret which defines environment variables ES_PASSWORD and ES_USERNAME. Created by kubectl create secret generic tracing-secret --from-literal=ES_PASSWORD=changeme --from-literal=ES_USERNAME=elastic
4 Volume mounts and volumes which are mounted into all storage components.

Managing certificates with Elasticsearch

You can create and manage certificates using the OpenShift Elasticsearch Operator. Managing certificates using the OpenShift Elasticsearch Operator also lets you use a single Elasticsearch cluster with multiple Jaeger Collectors.

Managing certificates with Elasticsearch is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Starting with version 2.4, the Red Hat OpenShift distributed tracing platform (Jaeger) Operator delegates certificate creation to the OpenShift Elasticsearch Operator by using the following annotations in the Elasticsearch custom resource:

  • logging.openshift.io/elasticsearch-cert-management: "true"

  • logging.openshift.io/elasticsearch-cert.jaeger-<shared-es-node-name>: "user.jaeger"

  • logging.openshift.io/elasticsearch-cert.curator-<shared-es-node-name>: "system.logging.curator"

Where the <shared-es-node-name> is the name of the Elasticsearch node. For example, if you create an Elasticsearch node named custom-es, your custom resource might look like the following example.

Example Elasticsearch CR showing annotations
apiVersion: logging.openshift.io/v1
kind: Elasticsearch
metadata:
  annotations:
    logging.openshift.io/elasticsearch-cert-management: "true"
    logging.openshift.io/elasticsearch-cert.jaeger-custom-es: "user.jaeger"
    logging.openshift.io/elasticsearch-cert.curator-custom-es: "system.logging.curator"
  name: custom-es
spec:
  managementState: Managed
  nodeSpec:
    resources:
      limits:
        memory: 16Gi
      requests:
        cpu: 1
        memory: 16Gi
  nodes:
    - nodeCount: 3
      proxyResources: {}
      resources: {}
      roles:
        - master
        - client
        - data
      storage: {}
  redundancyPolicy: ZeroRedundancy
Prerequisites
  • The Red Hat OpenShift Service Mesh Operator is installed.

  • The {logging-title} is installed with default configuration in your cluster.

  • The Elasticsearch node and the Jaeger instances must be deployed in the same namespace. For example, tracing-system.

You enable certificate management by setting spec.storage.elasticsearch.useCertManagement to true in the Jaeger custom resource.

Example showing useCertManagement
apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: jaeger-prod
spec:
  strategy: production
  storage:
    type: elasticsearch
    elasticsearch:
      name: custom-es
      doNotProvision: true
      useCertManagement: true

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator sets the Elasticsearch custom resource name to the value of spec.storage.elasticsearch.name from the Jaeger custom resource when provisioning Elasticsearch.

The certificates are provisioned by the OpenShift Elasticsearch Operator and the Red Hat OpenShift distributed tracing platform (Jaeger) Operator injects the certificates.

For more information about configuring Elasticsearch with OpenShift Container Platform, see Configuring the Elasticsearch log store or Configuring and deploying distributed tracing.

Query configuration options

Query is a service that retrieves traces from storage and hosts the user interface to display them.

Table 14. Parameters used by the Red Hat OpenShift distributed tracing platform (Jaeger) Operator to define Query
Parameter Description Values Default value
spec:
  query:
    replicas:

Specifies the number of Query replicas to create.

Integer, for example, 2

Table 15. Configuration parameters passed to Query
Parameter Description Values Default value
spec:
  query:
    options: {}

Configuration options that define the Query service.

options:
  log-level:

Logging level for Query.

Possible values: debug, info, warn, error, fatal, panic.

options:
  query:
    base-path:

The base path for all jaeger-query HTTP routes can be set to a non-root value, for example, /jaeger would cause all UI URLs to start with /jaeger. This can be useful when running jaeger-query behind a reverse proxy.

/<path>

Sample Query configuration
apiVersion: jaegertracing.io/v1
kind: "Jaeger"
metadata:
  name: "my-jaeger"
spec:
  strategy: allInOne
  allInOne:
    options:
      log-level: debug
      query:
        base-path: /jaeger

Ingester configuration options

Ingester is a service that reads from a Kafka topic and writes to the Elasticsearch storage backend. If you are using the allInOne or production deployment strategies, you do not need to configure the Ingester service.

Table 16. Jaeger parameters passed to the Ingester
Parameter Description Values
spec:
  ingester:
    options: {}

Configuration options that define the Ingester service.

options:
  deadlockInterval:

Specifies the interval, in seconds or minutes, that the Ingester must wait for a message before terminating. The deadlock interval is disabled by default (set to 0), to avoid terminating the Ingester when no messages arrive during system initialization.

Minutes and seconds, for example, 1m0s. Default value is 0.

options:
  kafka:
    consumer:
      topic:

The topic parameter identifies the Kafka configuration used by the collector to produce the messages, and the Ingester to consume the messages.

Label for the consumer. For example, jaeger-spans.

options:
  kafka:
    consumer:
      brokers:

Identifies the Kafka configuration used by the Ingester to consume the messages.

Label for the broker, for example, my-cluster-kafka-brokers.kafka:9092.

options:
  log-level:

Logging level for the Ingester.

Possible values: debug, info, warn, error, fatal, dpanic, panic.

Streaming Collector and Ingester example
apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: simple-streaming
spec:
  strategy: streaming
  collector:
    options:
      kafka:
        producer:
          topic: jaeger-spans
          brokers: my-cluster-kafka-brokers.kafka:9092
  ingester:
    options:
      kafka:
        consumer:
          topic: jaeger-spans
          brokers: my-cluster-kafka-brokers.kafka:9092
      ingester:
        deadlockInterval: 5
  storage:
    type: elasticsearch
    options:
      es:
        server-urls: http://elasticsearch:9200