×

Prerequisites

About installations in restricted networks

In OpenShift Container Platform 4.17, you can perform an installation that does not require an active connection to the internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.

For installer-provisioned infrastructure in OpenShift Container Platform 4.17, you need to deploy your restricted network cluster in OpenShift Container Platform 4.16 and upgrade it to OpenShift Container Platform 4.17.

If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less internet access for an installation on bare metal hardware, Nutanix, or on VMware vSphere.

To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift image registry and contains the installation media. You can create this registry on a mirror host, which can access both the internet and your closed network, or by using other methods that meet your restrictions.

Additional limits

Clusters in restricted networks have the following additional limitations and restrictions:

  • The ClusterVersion status includes an Unable to retrieve available updates error.

  • By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.

About using a custom VPC

In OpenShift Container Platform 4.17, you can deploy a cluster into the subnets of an existing IBM® Virtual Private Cloud (VPC).

Requirements for using your VPC

You must correctly configure the existing VPC and its subnets before you install the cluster. The installation program does not create a VPC or VPC subnet in this scenario.

The installation program cannot:

  • Subdivide network ranges for the cluster to use

  • Set route tables for the subnets

  • Set VPC options like DHCP

The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.

VPC validation

The VPC and all of the subnets must be in an existing resource group. The cluster is deployed to this resource group.

As part of the installation, specify the following in the install-config.yaml file:

  • The name of the resource group

  • The name of VPC

  • The name of the VPC subnet

To ensure that the subnets that you provide are suitable, the installation program confirms that all of the subnets you specify exists.

Subnet IDs are not supported.

Isolation between clusters

If you deploy OpenShift Container Platform to an existing network, the isolation of cluster services is reduced in the following ways:

  • ICMP Ingress is allowed to the entire network.

  • TCP port 22 Ingress (SSH) is allowed to the entire network.

  • Control plane TCP 6443 Ingress (Kubernetes API) is allowed to the entire network.

  • Control plane TCP 22623 Ingress (MCS) is allowed to the entire network.

Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.17, you require access to the internet to obtain the images that are necessary to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.

  • Access Quay.io to obtain the packages that are required to install your cluster.

  • Obtain the packages that are required to perform cluster updates.

Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure
  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
    1 Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"
      Example output
      Agent pid 31874
  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> (1)
    1 Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519
    Example output
    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Next steps
  • When you install OpenShift Container Platform, provide the SSH public key to the installation program.

Exporting the API key

You must set the API key you created as a global variable; the installation program ingests the variable during startup to set the API key.

Prerequisites
  • You have created either a user API key or service ID API key for your IBM Cloud® account.

Procedure
  • Export your API key for your account as a global variable:

    $ export IBMCLOUD_API_KEY=<api_key>

You must set the variable name exactly as specified; the installation program expects the variable name to be present during startup.

Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on

Prerequisites
  • You have the OpenShift Container Platform installation program and the pull secret for your cluster. For a restricted network installation, these files are on your mirror host.

  • You have the imageContentSources values that were generated during mirror registry creation.

  • You have obtained the contents of the certificate for your mirror registry.

  • You have retrieved a Red Hat Enterprise Linux CoreOS (RHCOS) image and uploaded it to an accessible location.

Procedure
  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> (1)
      1 For <installation_directory>, specify the directory name to store the files that the installation program creates.

      When specifying the directory:

      • Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.

        Always delete the ~/.powervs directory to avoid reusing a stale configuration. Run the following command:

        $ rm -rf ~/.powervs
    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select powervs as the platform to target.

      3. Select the region to deploy the cluster to.

      4. Select the zone to deploy the cluster to.

      5. Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.

      6. Enter a descriptive name for your cluster.

  2. Edit the install-config.yaml file to give the additional information that is required for an installation in a restricted network.

    1. Update the pullSecret value to contain the authentication information for your registry:

      pullSecret: '{"auths":{"<mirror_host_name>:5000": {"auth": "<credentials>","email": "you@example.com"}}}'

      For <mirror_host_name>, specify the registry domain name that you specified in the certificate for your mirror registry, and for <credentials>, specify the base64-encoded user name and password for your mirror registry.

    2. Add the additionalTrustBundle parameter and value.

      additionalTrustBundle: |
        -----BEGIN CERTIFICATE-----
        ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
        -----END CERTIFICATE-----

      The value must be the contents of the certificate file that you used for your mirror registry. The certificate file can be an existing, trusted certificate authority, or the self-signed certificate that you generated for the mirror registry.

    3. Define the network and subnets for the VPC to install the cluster in under the parent platform.powervs field:

      vpcName: <existing_vpc>
      vpcSubnets: <vpcSubnet>

      For platform.powervs.vpcName, specify the name for the existing IBM Cloud®. For platform.powervs.vpcSubnets, specify the existing subnets.

    4. Add the image content resources, which resemble the following YAML excerpt:

      imageContentSources:
      - mirrors:
        - <mirror_host_name>:5000/<repo_name>/release
        source: quay.io/openshift-release-dev/ocp-release
      - mirrors:
        - <mirror_host_name>:5000/<repo_name>/release
        source: registry.redhat.io/ocp/release

      For these values, use the imageContentSources that you recorded during mirror registry creation.

    5. Optional: Set the publishing strategy to Internal:

      publish: Internal

      By setting this option, you create an internal Ingress Controller and a private load balancer.

  3. Make any other modifications to the install-config.yaml file that you require.

    For more information about the parameters, see "Installation configuration parameters".

  4. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 1. Minimum resource requirements
Machine Operating System vCPU [1] Virtual RAM Storage Input/Output Per Second (IOPS)[2]

Bootstrap

RHCOS

2

16 GB

100 GB

300

Control plane

RHCOS

2

16 GB

100 GB

300

Compute

RHCOS

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.

  2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.

As of OpenShift Container Platform version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA

  • ARM64 architecture requires ARMv8.0-A ISA

  • IBM Power architecture requires Power 9 ISA

  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.

Additional resources

Sample customized install-config.yaml file for IBM Power Virtual Server

You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.

apiVersion: v1
baseDomain: example.com (1)
controlPlane:  (2) (3)
  hyperthreading: Enabled (4)
  name: master
  platform:
    powervs:
      smtLevel: 8 (5)
  replicas: 3
compute:  (2) (3)
- hyperthreading: Enabled (4)
  name: worker
  platform:
    powervs:
      smtLevel: 8 (5)
    ibmcloud: {}
  replicas: 3
metadata:
  name: example-restricted-cluster-name (1)
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14 (6)
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16 (7)
  networkType: OVNKubernetes (8)
  serviceNetwork:
  - 192.168.0.0/24
platform:
  powervs:
    userid: ibm-user-id
    powervsResourceGroup: "ibmcloud-resource-group" (9)
    region: "powervs-region"
    vpcRegion: "vpc-region"
    vpcName: name-of-existing-vpc (10)
    vpcSubnets: (11)
       - name-of-existing-vpc-subnet
    zone: "powervs-zone"
    serviceInstanceID: "service-instance-id"
publish: Internal
credentialsMode: Manual
pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' (12)
sshKey: ssh-ed25519 AAAA... (13)
additionalTrustBundle: | (14)
    -----BEGIN CERTIFICATE-----
    <MY_TRUSTED_CA_CERT>
    -----END CERTIFICATE-----
imageContentSources: (15)
- mirrors:
  - <local_registry>/<local_repository_name>/release
  source: quay.io/openshift-release-dev/ocp-release
- mirrors:
  - <local_registry>/<local_repository_name>/release
  source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
1 Required.
2 If you do not provide these parameters and values, the installation program provides the default value.
3 The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
4 Enables or disables simultaneous multithreading, also known as Hyper-Threading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger machine types, such as n1-standard-8, for your machines if you disable simultaneous multithreading.

5 The smtLevel specifies the level of SMT to set to the control plane and compute machines. The supported values are 1, 2, 4, 8, 'off' and 'on'. The default value is 8. The smtLevel 'off' sets SMT to off and smtlevel 'on' sets SMT to the default value 8 on the cluster nodes.

When simultaneous multithreading (SMT), or hyperthreading is not enabled, one vCPU is equivalent to one physical core. When enabled, total vCPUs is computed as (Thread(s) per core * Core(s) per socket) * Socket(s). The smtLevel controls the threads per core. Lower SMT levels may require additional assigned cores when deploying the cluster nodes. You can do this by setting the 'processors' parameter in the install-config.yaml file to an appropriate value to meet the requirements for deploying OpenShift Container Platform successfully.

6 The machine CIDR must contain the subnets for the compute machines and control plane machines.
7 The CIDR must contain the subnets defined in platform.ibmcloud.controlPlaneSubnets and platform.ibmcloud.computeSubnets.
8 The cluster network plugin to install. The default value OVNKubernetes is the only supported value.
9 The name of an existing resource group. The existing VPC and subnets should be in this resource group. The cluster is deployed to this resource group.
10 Specify the name of an existing VPC.
11 Specify the name of the existing VPC subnet. The subnets must belong to the VPC that you specified. Specify a subnet for each availability zone in the region.
12 For <local_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example, registry.example.com or registry.example.com:5000. For <credentials>, specify the base64-encoded user name and password for your mirror registry.
13 You can optionally provide the sshKey value that you use to access the machines in your cluster.
14 Provide the contents of the certificate file that you used for your mirror registry.
15 Provide the imageContentSources section from the output of the command to mirror the repository.

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites
  • You have an existing install-config.yaml file.

  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure
  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
      httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
      noProxy: example.com (3)
    additionalTrustBundle: | (4)
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> (5)
    1 A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2 A proxy URL to use for creating HTTPS connections outside the cluster.
    3 A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4 If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    5 Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.

    The installation program does not support the proxy readinessEndpoints field.

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Only the Proxy object named cluster is supported, and no additional proxies can be created.

Manually creating IAM

Installing the cluster requires that the Cloud Credential Operator (CCO) operate in manual mode. While the installation program configures the CCO for manual mode, you must specify the identity and access management secrets for you cloud provider.

You can use the Cloud Credential Operator (CCO) utility (ccoctl) to create the required IBM Cloud® resources.

Prerequisites
  • You have configured the ccoctl binary.

  • You have an existing install-config.yaml file.

Procedure
  1. Edit the install-config.yaml configuration file so that it contains the credentialsMode parameter set to Manual.

    Example install-config.yaml configuration file
    apiVersion: v1
    baseDomain: cluster1.example.com
    credentialsMode: Manual (1)
    compute:
    - architecture: ppc64le
      hyperthreading: Enabled
    1 This line is added to set the credentialsMode parameter to Manual.
  2. To generate the manifests, run the following command from the directory that contains the installation program:

    $ ./openshift-install create manifests --dir <installation_directory>
  3. From the directory that contains the installation program, set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \(1)
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \(2)
      --to=<path_to_directory_for_credentials_requests> (3)
    1 The --included parameter includes only the manifests that your specific cluster configuration requires.
    2 Specify the location of the install-config.yaml file.
    3 Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.

    This command creates a YAML file for each CredentialsRequest object.

    Sample CredentialsRequest object
      apiVersion: cloudcredential.openshift.io/v1
      kind: CredentialsRequest
      metadata:
        labels:
          controller-tools.k8s.io: "1.0"
        name: openshift-image-registry-ibmcos
        namespace: openshift-cloud-credential-operator
      spec:
        secretRef:
          name: installer-cloud-credentials
          namespace: openshift-image-registry
        providerSpec:
          apiVersion: cloudcredential.openshift.io/v1
          kind: IBMCloudProviderSpec
          policies:
          - attributes:
            - name: serviceName
              value: cloud-object-storage
            roles:
            - crn:v1:bluemix:public:iam::::role:Viewer
            - crn:v1:bluemix:public:iam::::role:Operator
            - crn:v1:bluemix:public:iam::::role:Editor
            - crn:v1:bluemix:public:iam::::serviceRole:Reader
            - crn:v1:bluemix:public:iam::::serviceRole:Writer
          - attributes:
            - name: resourceType
              value: resource-group
            roles:
            - crn:v1:bluemix:public:iam::::role:Viewer
  5. Create the service ID for each credential request, assign the policies defined, create an API key, and generate the secret:

    $ ccoctl ibmcloud create-service-id \
      --credentials-requests-dir=<path_to_credential_requests_directory> \(1)
      --name=<cluster_name> \(2)
      --output-dir=<installation_directory> \(3)
      --resource-group-name=<resource_group_name> (4)
    1 Specify the directory containing the files for the component CredentialsRequest objects.
    2 Specify the name of the OpenShift Container Platform cluster.
    3 Optional: Specify the directory in which you want the ccoctl utility to create objects. By default, the utility creates objects in the directory in which the commands are run.
    4 Optional: Specify the name of the resource group used for scoping the access policies.

    If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

    If an incorrect resource group name is provided, the installation fails during the bootstrap phase. To find the correct resource group name, run the following command:

    $ grep resourceGroup <installation_directory>/manifests/cluster-infrastructure-02-config.yml
Verification
  • Ensure that the appropriate secrets were generated in your cluster’s manifests directory.

Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites
  • You have configured an account with the cloud platform that hosts your cluster.

  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.

  • You have verified that the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.

Procedure
  • Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ (1)
        --log-level=info (2)
    
    1 For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2 To view different installation details, specify warn, debug, or error instead of info.
Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.

  • Credential information also outputs to <installation_directory>/.openshift_install.log.

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.

  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

Installing the OpenShift CLI

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.17. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure
  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.

  2. Select the architecture from the Product Variant drop-down list.

  3. Select the appropriate version from the Version drop-down list.

  4. Click Download Now next to the OpenShift v4.17 Linux Clients entry and save the file.

  5. Unpack the archive:

    $ tar xvf <file>
  6. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH
Verification
  • After you install the OpenShift CLI, it is available using the oc command:

    $ oc <command>

Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure
  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.

  2. Select the appropriate version from the Version drop-down list.

  3. Click Download Now next to the OpenShift v4.17 Windows Client entry and save the file.

  4. Unzip the archive with a ZIP program.

  5. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path
Verification
  • After you install the OpenShift CLI, it is available using the oc command:

    C:\> oc <command>

Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure
  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.

  2. Select the appropriate version from the Version drop-down list.

  3. Click Download Now next to the OpenShift v4.17 macOS Clients entry and save the file.

    For macOS arm64, choose the OpenShift v4.17 macOS arm64 Client entry.

  4. Unpack and unzip the archive.

  5. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH
Verification
  • Verify your installation by using an oc command:

    $ oc <command>

Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites
  • You deployed an OpenShift Container Platform cluster.

  • You installed the oc CLI.

Procedure
  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami
    Example output
    system:admin
Additional resources

Disabling the default OperatorHub catalog sources

Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.

Procedure
  • Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:

    $ oc patch OperatorHub cluster --type json \
        -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

Alternatively, you can use the web console to manage catalog sources. From the AdministrationCluster SettingsConfigurationOperatorHub page, click the Sources tab, where you can create, update, delete, disable, and enable individual sources.

Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.17, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.

After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources