-
podSelector
andnamespaceSelector
-
ipBlock
As a cluster administrator, you can configure an additional secondary network for your cluster using the NetworkAttachmentDefinition
(NAD) resource.
Support for user-defined networks as a secondary network will be added in a future version of OpenShift Container Platform. |
The Red Hat OpenShift Networking OVN-Kubernetes network plugin allows the configuration of secondary network interfaces for pods. To configure secondary network interfaces, you must define the configurations in the NetworkAttachmentDefinition
custom resource definition (CRD).
Pod and multi-network policy creation might remain in a pending state until the OVN-Kubernetes control plane agent in the nodes processes the associated |
You can configure an OVN-Kubernetes additional network in either layer 2 or localnet topologies.
A layer 2 topology supports east-west cluster traffic, but does not allow access to the underlying physical network.
A localnet topology allows connections to the physical network, but requires additional configuration of the underlying Open vSwitch (OVS) bridge on cluster nodes.
The following sections provide example configurations for each of the topologies that OVN-Kubernetes currently allows for secondary networks.
Networks names must be unique. For example, creating multiple |
You can use an OVN-Kubernetes additional network with the following supported platforms:
Bare metal
IBM Power®
IBM Z®
IBM® LinuxONE
VMware vSphere
Red Hat OpenStack Platform (RHOSP)
The following table describes the configuration parameters for the OVN-Kubernetes CNI network plugin:
Field | Type | Description |
---|---|---|
|
|
The CNI specification version. The required value is |
|
|
The name of the network. These networks are not namespaced. For example, you can have a network named
|
|
|
The name of the CNI plugin to configure. This value must be set to |
|
|
The topological configuration for the network. Must be one of |
|
|
The subnet to use for the network across the cluster. For When omitted, the logical switch implementing the network only provides layer 2 communication, and users must configure IP addresses for the pods. Port security only prevents MAC spoofing. |
|
|
The maximum transmission unit (MTU). The default value, |
|
|
The metadata |
|
|
A comma-separated list of CIDRs and IP addresses. IP addresses are removed from the assignable IP address pool and are never passed to the pods. |
|
|
If topology is set to |
The multi-network policy API, which is provided by the MultiNetworkPolicy
custom resource definition (CRD) in the k8s.cni.cncf.io
API group, is compatible with an OVN-Kubernetes secondary network. When defining a network policy, the network policy rules that can be used depend on whether the OVN-Kubernetes secondary network defines the subnets
field. Refer to the following table for details:
subnets field specified |
Allowed multi-network policy selectors |
---|---|
Yes |
|
No |
|
For example, the following multi-network policy is valid only if the subnets
field is defined in the additional network CNI configuration for the additional network named blue2
:
apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
name: allow-same-namespace
annotations:
k8s.v1.cni.cncf.io/policy-for: blue2
spec:
podSelector:
ingress:
- from:
- podSelector: {}
The following example uses the ipBlock
network policy selector, which is always valid for an OVN-Kubernetes additional network:
apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
name: ingress-ipblock
annotations:
k8s.v1.cni.cncf.io/policy-for: default/flatl2net
spec:
podSelector:
matchLabels:
name: access-control
policyTypes:
- Ingress
ingress:
- from:
- ipBlock:
cidr: 10.200.0.0/30
The switched localnet
topology interconnects the workloads created as Network Attachment Definitions (NADs) through a cluster-wide logical switch to a physical network.
You must map an additional network to the OVN bridge to use it as an OVN-Kubernetes additional network. Bridge mappings allow network traffic to reach the physical network. A bridge mapping associates a physical network name, also known as an interface label, to a bridge created with Open vSwitch (OVS).
You can create an NodeNetworkConfigurationPolicy
object, part of the nmstate.io/v1
API group, to declaratively create the mapping. This API is provided by the NMState Operator. By using this API you can apply the bridge mapping to nodes that match your specified nodeSelector
expression, such as node-role.kubernetes.io/worker: ''
.
When attaching an additional network, you can either use the existing br-ex
bridge or create a new bridge. Which approach to use depends on your specific network infrastructure.
If your nodes include only a single network interface, you must use the existing bridge. This network interface is owned and managed by OVN-Kubernetes and you must not remove it from the br-ex
bridge or alter the interface configuration. If you remove or alter the network interface, your cluster network will stop working correctly.
If your nodes include several network interfaces, you can attach a different network interface to a new bridge, and use that for your additional network. This approach provides for traffic isolation from your primary cluster network.
The localnet1
network is mapped to the br-ex
bridge in the following example:
apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
name: mapping (1)
spec:
nodeSelector:
node-role.kubernetes.io/worker: '' (2)
desiredState:
ovn:
bridge-mappings:
- localnet: localnet1 (3)
bridge: br-ex (4)
state: present (5)
1 | The name for the configuration object. |
2 | A node selector that specifies the nodes to apply the node network configuration policy to. |
3 | The name for the additional network from which traffic is forwarded to the OVS bridge. This additional network must match the name of the spec.config.name field of the NetworkAttachmentDefinition CRD that defines the OVN-Kubernetes additional network. |
4 | The name of the OVS bridge on the node. This value is required only if you specify state: present . |
5 | The state for the mapping. Must be either present to add the bridge or absent to remove the bridge. The default value is present . |
In the following example, the localnet2
network interface is attached to the ovs-br1
bridge. Through this attachment, the network interface is available to the OVN-Kubernetes network plugin as an additional network.
apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
name: ovs-br1-multiple-networks (1)
spec:
nodeSelector:
node-role.kubernetes.io/worker: '' (2)
desiredState:
interfaces:
- name: ovs-br1 (3)
description: |-
A dedicated OVS bridge with eth1 as a port
allowing all VLANs and untagged traffic
type: ovs-bridge
state: up
bridge:
allow-extra-patch-ports: true
options:
stp: false
port:
- name: eth1 (4)
ovn:
bridge-mappings:
- localnet: localnet2 (5)
bridge: ovs-br1 (6)
state: present (7)
1 | The name for the configuration object. |
2 | A node selector that specifies the nodes to apply the node network configuration policy to. |
3 | A new OVS bridge, separate from the default bridge used by OVN-Kubernetes for all cluster traffic. |
4 | A network device on the host system to associate with this new OVS bridge. |
5 | The name for the additional network from which traffic is forwarded to the OVS bridge. This additional network must match the name of the spec.config.name field of the NetworkAttachmentDefinition CRD that defines the OVN-Kubernetes additional network. |
6 | The name of the OVS bridge on the node. This value is required only if you specify state: present . |
7 | The state for the mapping. Must be either present to add the bridge or absent to remove the bridge. The default value is present . |
This declarative approach is recommended because the NMState Operator applies additional network configuration to all nodes specified by the node selector automatically and transparently.
The following JSON example configures a localnet secondary network:
{
"cniVersion": "0.3.1",
"name": "ns1-localnet-network",
"type": "ovn-k8s-cni-overlay",
"topology":"localnet",
"subnets": "202.10.130.112/28",
"vlanID": 33,
"mtu": 1500,
"netAttachDefName": "ns1/localnet-network"
"excludeSubnets": "10.100.200.0/29"
}
The switched (layer 2) topology networks interconnect the workloads through a cluster-wide logical switch. This configuration can be used for IPv6 and dual-stack deployments.
Layer 2 switched topology networks only allow for the transfer of data packets between pods within a cluster. |
The following JSON example configures a switched secondary network:
{
"cniVersion": "0.3.1",
"name": "l2-network",
"type": "ovn-k8s-cni-overlay",
"topology":"layer2",
"subnets": "10.100.200.0/24",
"mtu": 1300,
"netAttachDefName": "ns1/l2-network",
"excludeSubnets": "10.100.200.0/29"
}
You must specify the secondary network attachments through the k8s.v1.cni.cncf.io/networks
annotation.
The following example provisions a pod with two secondary attachments, one for each of the attachment configurations presented in this guide.
apiVersion: v1
kind: Pod
metadata:
annotations:
k8s.v1.cni.cncf.io/networks: l2-network
name: tinypod
namespace: ns1
spec:
containers:
- args:
- pause
image: k8s.gcr.io/e2e-test-images/agnhost:2.36
imagePullPolicy: IfNotPresent
name: agnhost-container
The following example provisions a pod with a static IP address.
|
apiVersion: v1
kind: Pod
metadata:
annotations:
k8s.v1.cni.cncf.io/networks: '[
{
"name": "l2-network", (1)
"mac": "02:03:04:05:06:07", (2)
"interface": "myiface1", (3)
"ips": [
"192.0.2.20/24"
] (4)
}
]'
name: tinypod
namespace: ns1
spec:
containers:
- args:
- pause
image: k8s.gcr.io/e2e-test-images/agnhost:2.36
imagePullPolicy: IfNotPresent
name: agnhost-container
1 | The name of the network. This value must be unique across all NetworkAttachmentDefinition CRDs. |
2 | The MAC address to be assigned for the interface. |
3 | The name of the network interface to be created for the pod. |
4 | The IP addresses to be assigned to the network interface. |