×

In OpenShift Container Platform version 4.13, you can install a cluster on VMware vSphere infrastructure that you provision in a restricted network.

OpenShift Container Platform supports deploying a cluster to a single VMware vCenter only. Deploying a cluster with machines/machine sets on multiple vCenters is not supported.

The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the vSphere platform and the installation process of OpenShift Container Platform. Use the user-provisioned infrastructure installation instructions as a guide; you are free to create the required resources through other methods.

Prerequisites

  • You reviewed details about the OpenShift Container Platform installation and update processes.

  • You read the documentation on selecting a cluster installation method and preparing it for users.

  • You created a registry on your mirror host and obtained the imageContentSources data for your version of OpenShift Container Platform.

    Because the installation media is on the mirror host, you can use that computer to complete all installation steps.

  • You provisioned persistent storage for your cluster. To deploy a private image registry, your storage must provide ReadWriteMany access modes.

  • Completing the installation requires that you upload the Red Hat Enterprise Linux CoreOS (RHCOS) OVA on vSphere hosts. The machine from which you complete this process requires access to port 443 on the vCenter and ESXi hosts. You verified that port 443 is accessible.

  • If you use a firewall, you confirmed with the administrator that port 443 is accessible. Control plane nodes must be able to reach vCenter and ESXi hosts on port 443 for the installation to succeed.

  • If you use a firewall and plan to use the Telemetry service, you configured the firewall to allow the sites that your cluster requires access to.

    Be sure to also review this site list if you are configuring a proxy.

About installations in restricted networks

In OpenShift Container Platform 4.13, you can perform an installation that does not require an active connection to the internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.

If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less internet access for an installation on bare metal hardware, Nutanix, or on VMware vSphere.

To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift image registry and contains the installation media. You can create this registry on a mirror host, which can access both the internet and your closed network, or by using other methods that meet your restrictions.

Because of the complexity of the configuration for user-provisioned installations, consider completing a standard user-provisioned infrastructure installation before you attempt a restricted network installation using user-provisioned infrastructure. Completing this test installation might make it easier to isolate and troubleshoot any issues that might arise during your installation in a restricted network.

Additional limits

Clusters in restricted networks have the following additional limitations and restrictions:

  • The ClusterVersion status includes an Unable to retrieve available updates error.

  • By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.

Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.13, you require access to the internet to obtain the images that are necessary to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager Hybrid Cloud Console to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.

  • Access Quay.io to obtain the packages that are required to install your cluster.

  • Obtain the packages that are required to perform cluster updates.

VMware vSphere infrastructure requirements

You must install an OpenShift Container Platform cluster on one of the following versions of a VMware vSphere instance that meets the requirements for the components that you use:

  • Version 7.0 Update 2 or later, or VMware Cloud Foundation 4.3 or later

  • Version 8.0 Update 1 or later, or VMware Cloud Foundation 5.0 or later

You can host the VMware vSphere infrastructure on-premise or on a VMware Cloud Verified provider that meets the requirements outlined in the following table:

Table 1. Version requirements for vSphere virtual environments
Virtual environment product Required version

VMware virtual hardware

15 or later

vSphere ESXi hosts

7.0 Update 2 or later, or VMware Cloud Foundation 4.3 or later; 8.0 Update 1 or later, or VMware Cloud Foundation 5.0 or later

vCenter host

7.0 Update 2 or later, or VMware Cloud Foundation 4.3 or later; 8.0 Update 1 or later, or VMware Cloud Foundation 5.0 or later

Table 2. Minimum supported vSphere version for VMware components
Component Minimum supported versions Description

Hypervisor

vSphere 7.0 Update 2 or later, or VMware Cloud Foundation 4.3 or later; vSphere 8.0 Update 1 or later, or VMware Cloud Foundation 5.0 or later with virtual hardware version 15

This hypervisor version is the minimum version that Red Hat Enterprise Linux CoreOS (RHCOS) supports. For more information about supported hardware on the latest version of Red Hat Enterprise Linux (RHEL) that is compatible with RHCOS, see Hardware on the Red Hat Customer Portal.

Storage with in-tree drivers

vSphere 7.0 Update 2 and later; 8.0 Update 1 or later

This plugin creates vSphere storage by using the in-tree storage drivers for vSphere included in OpenShift Container Platform.

Optional: Networking (NSX-T)

vSphere 7.0 Update 2 or later, or VMware Cloud Foundation 4.3 or later; vSphere 8.0 Update 1 or later, or VMware Cloud Foundation 5.0 or later

For more information about the compatibility of NSX and OpenShift Container Platform, see the Release Notes section of VMware’s NSX container plugin documentation.

CPU micro-architecture

x86-64-v2 or higher

OpenShift 4.13 and later are based on RHEL 9.2 host operating system which raised the microarchitecture requirements to x86-64-v2. See the RHEL Microarchitecture requirements documentation. You can verify compatibility by following the procedures outlined in this KCS article.

You must ensure that the time on your ESXi hosts is synchronized before you install OpenShift Container Platform. See Edit Time Configuration for a Host in the VMware documentation.

Additional resources

VMware vSphere CSI Driver Operator requirements

To install the vSphere CSI Driver Operator, the following requirements must be met:

  • VMware vSphere version: 7.0 Update 2 or later, or VMware Cloud Foundation 4.3 or later; 8.0 Update 1 or later, or VMware Cloud Foundation 5.0 or later

  • vCenter version: 7.0 Update 2 or later, or VMware Cloud Foundation 4.3 or later; 8.0 Update 1 or later, or VMware Cloud Foundation 5.0 or later

  • Virtual machines of hardware version 15 or later

  • No third-party vSphere CSI driver already installed in the cluster

If a third-party vSphere CSI driver is present in the cluster, OpenShift Container Platform does not overwrite it. The presence of a third-party vSphere CSI driver prevents OpenShift Container Platform from updating to OpenShift Container Platform 4.13 or later.

The VMware vSphere CSI Driver Operator is supported only on clusters deployed with platform: vsphere in the installation manifest.

Additional resources

Requirements for a cluster with user-provisioned infrastructure

For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.

This section describes the requirements for deploying OpenShift Container Platform on user-provisioned infrastructure.

vCenter requirements

Before you install an OpenShift Container Platform cluster on your vCenter that uses infrastructure that you provided, you must prepare your environment.

Required vCenter account privileges

To install an OpenShift Container Platform cluster in a vCenter, your vSphere account must include privileges for reading and creating the required resources. Using an account that has global administrative privileges is the simplest way to access all of the necessary permissions.

Roles and privileges required for installation in vSphere API
vSphere object for role When required Required privileges in vSphere API

vSphere vCenter

Always

Cns.Searchable
InventoryService.Tagging.AttachTag
InventoryService.Tagging.CreateCategory
InventoryService.Tagging.CreateTag
InventoryService.Tagging.DeleteCategory
InventoryService.Tagging.DeleteTag
InventoryService.Tagging.EditCategory
InventoryService.Tagging.EditTag
Sessions.ValidateSession
StorageProfile.Update
StorageProfile.View

vSphere vCenter Cluster

If VMs will be created in the cluster root

Host.Config.Storage
Resource.AssignVMToPool
VApp.AssignResourcePool
VApp.Import
VirtualMachine.Config.AddNewDisk

vSphere vCenter Resource Pool

If an existing resource pool is provided

Host.Config.Storage
Resource.AssignVMToPool
VApp.AssignResourcePool
VApp.Import
VirtualMachine.Config.AddNewDisk

vSphere Datastore

Always

Datastore.AllocateSpace
Datastore.Browse
Datastore.FileManagement
InventoryService.Tagging.ObjectAttachable

vSphere Port Group

Always

Network.Assign

Virtual Machine Folder

Always

InventoryService.Tagging.ObjectAttachable
Resource.AssignVMToPool
VApp.Import
VirtualMachine.Config.AddExistingDisk
VirtualMachine.Config.AddNewDisk
VirtualMachine.Config.AddRemoveDevice
VirtualMachine.Config.AdvancedConfig
VirtualMachine.Config.Annotation
VirtualMachine.Config.CPUCount
VirtualMachine.Config.DiskExtend
VirtualMachine.Config.DiskLease
VirtualMachine.Config.EditDevice
VirtualMachine.Config.Memory
VirtualMachine.Config.RemoveDisk
VirtualMachine.Config.Rename
VirtualMachine.Config.ResetGuestInfo
VirtualMachine.Config.Resource
VirtualMachine.Config.Settings
VirtualMachine.Config.UpgradeVirtualHardware
VirtualMachine.Interact.GuestControl
VirtualMachine.Interact.PowerOff
VirtualMachine.Interact.PowerOn
VirtualMachine.Interact.Reset
VirtualMachine.Inventory.Create
VirtualMachine.Inventory.CreateFromExisting
VirtualMachine.Inventory.Delete
VirtualMachine.Provisioning.Clone
VirtualMachine.Provisioning.MarkAsTemplate
VirtualMachine.Provisioning.DeployTemplate

vSphere vCenter Datacenter

If the installation program creates the virtual machine folder. For UPI, VirtualMachine.Inventory.Create and VirtualMachine.Inventory.Delete privileges are optional if your cluster does not use the Machine API.

InventoryService.Tagging.ObjectAttachable
Resource.AssignVMToPool
VApp.Import
VirtualMachine.Config.AddExistingDisk
VirtualMachine.Config.AddNewDisk
VirtualMachine.Config.AddRemoveDevice
VirtualMachine.Config.AdvancedConfig
VirtualMachine.Config.Annotation
VirtualMachine.Config.CPUCount
VirtualMachine.Config.DiskExtend
VirtualMachine.Config.DiskLease
VirtualMachine.Config.EditDevice
VirtualMachine.Config.Memory
VirtualMachine.Config.RemoveDisk
VirtualMachine.Config.Rename
VirtualMachine.Config.ResetGuestInfo
VirtualMachine.Config.Resource
VirtualMachine.Config.Settings
VirtualMachine.Config.UpgradeVirtualHardware
VirtualMachine.Interact.GuestControl
VirtualMachine.Interact.PowerOff
VirtualMachine.Interact.PowerOn
VirtualMachine.Interact.Reset
VirtualMachine.Inventory.Create
VirtualMachine.Inventory.CreateFromExisting
VirtualMachine.Inventory.Delete
VirtualMachine.Provisioning.Clone
VirtualMachine.Provisioning.DeployTemplate
VirtualMachine.Provisioning.MarkAsTemplate
Folder.Create
Folder.Delete

Roles and privileges required for installation in vCenter graphical user interface (GUI)
vSphere object for role When required Required privileges in vCenter GUI

vSphere vCenter

Always

Cns.Searchable
"vSphere Tagging"."Assign or Unassign vSphere Tag"
"vSphere Tagging"."Create vSphere Tag Category"
"vSphere Tagging"."Create vSphere Tag"
vSphere Tagging"."Delete vSphere Tag Category"
"vSphere Tagging"."Delete vSphere Tag"
"vSphere Tagging"."Edit vSphere Tag Category"
"vSphere Tagging"."Edit vSphere Tag"
Sessions."Validate session"
"Profile-driven storage"."Profile-driven storage update"
"Profile-driven storage"."Profile-driven storage view"

vSphere vCenter Cluster

If VMs will be created in the cluster root

Host.Configuration."Storage partition configuration"
Resource."Assign virtual machine to resource pool"
VApp."Assign resource pool"
VApp.Import
"Virtual machine"."Change Configuration"."Add new disk"

vSphere vCenter Resource Pool

If an existing resource pool is provided

Host.Configuration."Storage partition configuration"
Resource."Assign virtual machine to resource pool"
VApp."Assign resource pool"
VApp.Import
"Virtual machine"."Change Configuration"."Add new disk"

vSphere Datastore

Always

Datastore."Allocate space"
Datastore."Browse datastore"
Datastore."Low level file operations"
"vSphere Tagging"."Assign or Unassign vSphere Tag on Object"

vSphere Port Group

Always

Network."Assign network"

Virtual Machine Folder

Always

"vSphere Tagging"."Assign or Unassign vSphere Tag on Object"
Resource."Assign virtual machine to resource pool"
VApp.Import
"Virtual machine"."Change Configuration"."Add existing disk"
"Virtual machine"."Change Configuration"."Add new disk"
"Virtual machine"."Change Configuration"."Add or remove device"
"Virtual machine"."Change Configuration"."Advanced configuration"
"Virtual machine"."Change Configuration"."Set annotation"
"Virtual machine"."Change Configuration"."Change CPU count"
"Virtual machine"."Change Configuration"."Extend virtual disk"
"Virtual machine"."Change Configuration"."Acquire disk lease"
"Virtual machine"."Change Configuration"."Modify device settings"
"Virtual machine"."Change Configuration"."Change Memory"
"Virtual machine"."Change Configuration"."Remove disk"
"Virtual machine"."Change Configuration".Rename
"Virtual machine"."Change Configuration"."Reset guest information"
"Virtual machine"."Change Configuration"."Change resource"
"Virtual machine"."Change Configuration"."Change Settings"
"Virtual machine"."Change Configuration"."Upgrade virtual machine compatibility"
"Virtual machine".Interaction."Guest operating system management by VIX API"
"Virtual machine".Interaction."Power off"
"Virtual machine".Interaction."Power on"
"Virtual machine".Interaction.Reset
"Virtual machine"."Edit Inventory"."Create new"
"Virtual machine"."Edit Inventory"."Create from existing"
"Virtual machine"."Edit Inventory"."Remove"
"Virtual machine".Provisioning."Clone virtual machine"
"Virtual machine".Provisioning."Mark as template"
"Virtual machine".Provisioning."Deploy template"

vSphere vCenter Datacenter

If the installation program creates the virtual machine folder. For UPI, VirtualMachine.Inventory.Create and VirtualMachine.Inventory.Delete privileges are optional if your cluster does not use the Machine API.

"vSphere Tagging"."Assign or Unassign vSphere Tag on Object"
Resource."Assign virtual machine to resource pool"
VApp.Import
"Virtual machine"."Change Configuration"."Add existing disk"
"Virtual machine"."Change Configuration"."Add new disk"
"Virtual machine"."Change Configuration"."Add or remove device"
"Virtual machine"."Change Configuration"."Advanced configuration"
"Virtual machine"."Change Configuration"."Set annotation"
"Virtual machine"."Change Configuration"."Change CPU count"
"Virtual machine"."Change Configuration"."Extend virtual disk"
"Virtual machine"."Change Configuration"."Acquire disk lease"
"Virtual machine"."Change Configuration"."Modify device settings"
"Virtual machine"."Change Configuration"."Change Memory"
"Virtual machine"."Change Configuration"."Remove disk"
"Virtual machine"."Change Configuration".Rename
"Virtual machine"."Change Configuration"."Reset guest information"
"Virtual machine"."Change Configuration"."Change resource"
"Virtual machine"."Change Configuration"."Change Settings"
"Virtual machine"."Change Configuration"."Upgrade virtual machine compatibility"
"Virtual machine".Interaction."Guest operating system management by VIX API"
"Virtual machine".Interaction."Power off"
"Virtual machine".Interaction."Power on"
"Virtual machine".Interaction.Reset
"Virtual machine"."Edit Inventory"."Create new"
"Virtual machine"."Edit Inventory"."Create from existing"
"Virtual machine"."Edit Inventory"."Remove"
"Virtual machine".Provisioning."Clone virtual machine"
"Virtual machine".Provisioning."Deploy template"
"Virtual machine".Provisioning."Mark as template"
Folder."Create folder"
Folder."Delete folder"

Additionally, the user requires some ReadOnly permissions, and some of the roles require permission to propogate the permissions to child objects. These settings vary depending on whether or not you install the cluster into an existing folder.

Required permissions and propagation settings
vSphere object When required Propagate to children Permissions required

vSphere vCenter

Always

False

Listed required privileges

vSphere vCenter Datacenter

Existing folder

False

ReadOnly permission

Installation program creates the folder

True

Listed required privileges

vSphere vCenter Cluster

Existing resource pool

False

ReadOnly permission

VMs in cluster root

True

Listed required privileges

vSphere vCenter Datastore

Always

False

Listed required privileges

vSphere Switch

Always

False

ReadOnly permission

vSphere Port Group

Always

False

Listed required privileges

vSphere vCenter Virtual Machine Folder

Existing folder

True

Listed required privileges

vSphere vCenter Resource Pool

Existing resource pool

True

Listed required privileges

For more information about creating an account with only the required privileges, see vSphere Permissions and User Management Tasks in the vSphere documentation.

Using OpenShift Container Platform with vMotion

If you intend on using vMotion in your vSphere environment, consider the following before installing an OpenShift Container Platform cluster.

  • Using Storage vMotion can cause issues and is not supported.

  • Using VMware compute vMotion to migrate the workloads for both OpenShift Container Platform compute machines and control plane machines is generally supported, where generally implies that you meet all VMware best practices for vMotion.

    To help ensure the uptime of your compute and control plane nodes, ensure that you follow the VMware best practices for vMotion, and use VMware anti-affinity rules to improve the availability of OpenShift Container Platform during maintenance or hardware issues.

    For more information about vMotion and anti-affinity rules, see the VMware vSphere documentation for vMotion networking requirements and VM anti-affinity rules.

  • If you are using VMware vSphere volumes in your pods, migrating a VM across datastores, either manually or through Storage vMotion, causes invalid references within OpenShift Container Platform persistent volume (PV) objects that can result in data loss.

  • OpenShift Container Platform does not support selective migration of VMDKs across datastores, using datastore clusters for VM provisioning or for dynamic or static provisioning of PVs, or using a datastore that is part of a datastore cluster for dynamic or static provisioning of PVs.

Cluster resources

When you deploy an OpenShift Container Platform cluster that uses infrastructure that you provided, you must create the following resources in your vCenter instance:

  • 1 Folder

  • 1 Tag category

  • 1 Tag

  • Virtual machines:

    • 1 template

    • 1 temporary bootstrap node

    • 3 control plane nodes

    • 3 compute machines

Although these resources use 856 GB of storage, the bootstrap node is destroyed during the cluster installation process. A minimum of 800 GB of storage is required to use a standard cluster.

If you deploy more compute machines, the OpenShift Container Platform cluster will use more storage.

Cluster limits

Available resources vary between clusters. The number of possible clusters within a vCenter is limited primarily by available storage space and any limitations on the number of required resources. Be sure to consider both limitations to the vCenter resources that the cluster creates and the resources that you require to deploy a cluster, such as IP addresses and networks.

Networking requirements

You can use Dynamic Host Configuration Protocol (DHCP) for the network and configure the DHCP server to set persistent IP addresses to machines in your cluster. In the DHCP lease, you must configure the DHCP to use the default gateway.

You do not need to use the DHCP for the network if you want to provision nodes with static IP addresses.

If you specify nodes or groups of nodes on different VLANs for a cluster that you want to install on user-provisioned infrastructure, you must ensure that machines in your cluster meet the requirements outlined in the "Network connectivity requirements" section of the Networking requirements for user-provisioned infrastructure document.

If you are installing to a restricted environment, the VM in your restricted network must have access to vCenter so that it can provision and manage nodes, persistent volume claims (PVCs), and other resources.

Ensure that each OpenShift Container Platform node in the cluster has access to a Network Time Protocol (NTP) server that is discoverable by DHCP. Installation is possible without an NTP server. However, asynchronous server clocks can cause errors, which the NTP server prevents.

Additionally, you must create the following networking resources before you install the OpenShift Container Platform cluster:

Required IP Addresses
DNS records

You must create DNS records for two static IP addresses in the appropriate DNS server for the vCenter instance that hosts your OpenShift Container Platform cluster. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify when you install the cluster. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..

Table 3. Required DNS records
Component Record Description

API VIP

api.<cluster_name>.<base_domain>.

This DNS A/AAAA or CNAME record must point to the load balancer for the control plane machines. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster.

Ingress VIP

*.apps.<cluster_name>.<base_domain>.

A wildcard DNS A/AAAA or CNAME record that points to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster.

Required machines for cluster installation

The smallest OpenShift Container Platform clusters require the following hosts:

Table 4. Minimum required hosts
Hosts Description

One temporary bootstrap machine

The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.

Three control plane machines

The control plane machines run the Kubernetes and OpenShift Container Platform services that form the control plane.

At least two compute machines, which are also known as worker machines.

The workloads requested by OpenShift Container Platform users run on the compute machines.

To maintain high availability of your cluster, use separate physical hosts for these cluster machines.

The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS), Red Hat Enterprise Linux (RHEL) 8.6 and later.

Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 9.2 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.

Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 5. Minimum resource requirements
Machine Operating System vCPU Virtual RAM Storage Input/Output Per Second (IOPS)[1]

Bootstrap

RHCOS

4

16 GB

100 GB

300

Control plane

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS, RHEL 8.6 and later [2]

2

8 GB

100 GB

300

  1. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.

  2. As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.

As of OpenShift Container Platform version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA

  • ARM64 architecture requires ARMv8.0-A ISA

  • IBM Power architecture requires Power 9 ISA

  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.

Additional resources

Requirements for encrypting virtual machines

You can encrypt your virtual machines prior to installing OpenShift Container Platform 4.13 by meeting the following requirements.

When you deploy the OVF template in the section titled "Installing RHCOS and starting the OpenShift Container Platform bootstrap process", select the option to "Encrypt this virtual machine" when you are selecting storage for the OVF template. After completing cluster installation, create a storage class that uses the encryption storage policy you used to encrypt the virtual machines.

Certificate signing requests management

Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.

Networking requirements for user-provisioned infrastructure

All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require networking to be configured in initramfs during boot to fetch their Ignition config files.

During the initial boot, the machines require an IP address configuration that is set either through a DHCP server or statically by providing the required boot options. After a network connection is established, the machines download their Ignition config files from an HTTP or HTTPS server. The Ignition config files are then used to set the exact state of each machine. The Machine Config Operator completes more changes to the machines, such as the application of new certificates or keys, after installation.

It is recommended to use a DHCP server for long-term management of the cluster machines. Ensure that the DHCP server is configured to provide persistent IP addresses, DNS server information, and hostnames to the cluster machines.

If a DHCP service is not available for your user-provisioned infrastructure, you can instead provide the IP networking configuration and the address of the DNS server to the nodes at RHCOS install time. These can be passed as boot arguments if you are installing from an ISO image. See the Installing RHCOS and starting the OpenShift Container Platform bootstrap process section for more information about static IP provisioning and advanced networking options.

The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.

Setting the cluster node hostnames through DHCP

On Red Hat Enterprise Linux CoreOS (RHCOS) machines, the hostname is set through NetworkManager. By default, the machines obtain their hostname through DHCP. If the hostname is not provided by DHCP, set statically through kernel arguments, or another method, it is obtained through a reverse DNS lookup. Reverse DNS lookup occurs after the network has been initialized on a node and can take time to resolve. Other system services can start prior to this and detect the hostname as localhost or similar. You can avoid this by using DHCP to provide the hostname for each cluster node.

Additionally, setting the hostnames through DHCP can bypass any manual DNS record name configuration errors in environments that have a DNS split-horizon implementation.

Network connectivity requirements

You must configure the network connectivity between machines to allow OpenShift Container Platform cluster components to communicate. Each machine must be able to resolve the hostnames of all other machines in the cluster.

This section provides details about the ports that are required.

In connected OpenShift Container Platform environments, all nodes are required to have internet access to pull images for platform containers and provide telemetry data to Red Hat.

Table 6. Ports used for all-machine to all-machine communications
Protocol Port Description

ICMP

N/A

Network reachability tests

TCP

1936

Metrics

9000-9999

Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.

10250-10259

The default ports that Kubernetes reserves

10256

openshift-sdn

UDP

4789

VXLAN

6081

Geneve

9000-9999

Host level services, including the node exporter on ports 9100-9101.

500

IPsec IKE packets

4500

IPsec NAT-T packets

123

Network Time Protocol (NTP) on UDP port 123

If an external NTP time server is configured, you must open UDP port 123.

TCP/UDP

30000-32767

Kubernetes node port

ESP

N/A

IPsec Encapsulating Security Payload (ESP)

Table 7. Ports used for all-machine to control plane communications
Protocol Port Description

TCP

6443

Kubernetes API

Table 8. Ports used for control plane machine to control plane machine communications
Protocol Port Description

TCP

2379-2380

etcd server and peer ports

Ethernet adaptor hardware address requirements

When provisioning VMs for the cluster, the ethernet interfaces configured for each VM must use a MAC address from the VMware Organizationally Unique Identifier (OUI) allocation ranges:

  • 00:05:69:00:00:00 to 00:05:69:FF:FF:FF

  • 00:0c:29:00:00:00 to 00:0c:29:FF:FF:FF

  • 00:1c:14:00:00:00 to 00:1c:14:FF:FF:FF

  • 00:50:56:00:00:00 to 00:50:56:3F:FF:FF

If a MAC address outside the VMware OUI is used, the cluster installation will not succeed.

NTP configuration for user-provisioned infrastructure

OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.

If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.

Additional resources

User-provisioned DNS requirements

In OpenShift Container Platform deployments, DNS name resolution is required for the following components:

  • The Kubernetes API

  • The OpenShift Container Platform application wildcard

  • The bootstrap, control plane, and compute machines

Reverse DNS resolution is also required for the Kubernetes API, the bootstrap machine, the control plane machines, and the compute machines.

DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the hostnames for all the nodes, unless the hostnames are provided by DHCP. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.

It is recommended to use a DHCP server to provide the hostnames to each cluster node. See the DHCP recommendations for user-provisioned infrastructure section for more information.

The following DNS records are required for a user-provisioned OpenShift Container Platform cluster and they must be in place before installation. In each record, <cluster_name> is the cluster name and <base_domain> is the base domain that you specify in the install-config.yaml file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..

Table 9. Required DNS records
Component Record Description

Kubernetes API

api.<cluster_name>.<base_domain>.

A DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the API load balancer. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.

api-int.<cluster_name>.<base_domain>.

A DNS A/AAAA or CNAME record, and a DNS PTR record, to internally identify the API load balancer. These records must be resolvable from all the nodes within the cluster.

The API server must be able to resolve the worker nodes by the hostnames that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods.

Routes

*.apps.<cluster_name>.<base_domain>.

A wildcard DNS A/AAAA or CNAME record that refers to the application ingress load balancer. The application ingress load balancer targets the machines that run the Ingress Controller pods. The Ingress Controller pods run on the compute machines by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.

For example, console-openshift-console.apps.<cluster_name>.<base_domain> is used as a wildcard route to the OpenShift Container Platform console.

Bootstrap machine

bootstrap.<cluster_name>.<base_domain>.

A DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster.

Control plane machines

<control_plane><n>.<cluster_name>.<base_domain>.

DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes. These records must be resolvable by the nodes within the cluster.

Compute machines

<compute><n>.<cluster_name>.<base_domain>.

DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster.

In OpenShift Container Platform 4.4 and later, you do not need to specify etcd host and SRV records in your DNS configuration.

You can use the dig command to verify name and reverse name resolution. See the section on Validating DNS resolution for user-provisioned infrastructure for detailed validation steps.

Example DNS configuration for user-provisioned clusters

This section provides A and PTR record configuration samples that meet the DNS requirements for deploying OpenShift Container Platform on user-provisioned infrastructure. The samples are not meant to provide advice for choosing one DNS solution over another.

In the examples, the cluster name is ocp4 and the base domain is example.com.

Example DNS A record configuration for a user-provisioned cluster

The following example is a BIND zone file that shows sample A records for name resolution in a user-provisioned cluster.

Sample DNS zone database
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W )		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1.example.com.		IN	A	192.168.1.5
smtp.example.com.		IN	A	192.168.1.5
;
helper.example.com.		IN	A	192.168.1.5
helper.ocp4.example.com.	IN	A	192.168.1.5
;
api.ocp4.example.com.		IN	A	192.168.1.5 (1)
api-int.ocp4.example.com.	IN	A	192.168.1.5 (2)
;
*.apps.ocp4.example.com.	IN	A	192.168.1.5 (3)
;
bootstrap.ocp4.example.com.	IN	A	192.168.1.96 (4)
;
control-plane0.ocp4.example.com.	IN	A	192.168.1.97 (5)
control-plane1.ocp4.example.com.	IN	A	192.168.1.98 (5)
control-plane2.ocp4.example.com.	IN	A	192.168.1.99 (5)
;
compute0.ocp4.example.com.	IN	A	192.168.1.11 (6)
compute1.ocp4.example.com.	IN	A	192.168.1.7 (6)
;
;EOF
1 Provides name resolution for the Kubernetes API. The record refers to the IP address of the API load balancer.
2 Provides name resolution for the Kubernetes API. The record refers to the IP address of the API load balancer and is used for internal cluster communications.
3 Provides name resolution for the wildcard routes. The record refers to the IP address of the application ingress load balancer. The application ingress load balancer targets the machines that run the Ingress Controller pods. The Ingress Controller pods run on the compute machines by default.

In the example, the same load balancer is used for the Kubernetes API and application ingress traffic. In production scenarios, you can deploy the API and application ingress load balancers separately so that you can scale the load balancer infrastructure for each in isolation.

4 Provides name resolution for the bootstrap machine.
5 Provides name resolution for the control plane machines.
6 Provides name resolution for the compute machines.
Example DNS PTR record configuration for a user-provisioned cluster

The following example BIND zone file shows sample PTR records for reverse name resolution in a user-provisioned cluster.

Sample DNS zone database for reverse records
$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W )		; minimum (1 week)
	IN	NS	ns1.example.com.
;
5.1.168.192.in-addr.arpa.	IN	PTR	api.ocp4.example.com. (1)
5.1.168.192.in-addr.arpa.	IN	PTR	api-int.ocp4.example.com. (2)
;
96.1.168.192.in-addr.arpa.	IN	PTR	bootstrap.ocp4.example.com. (3)
;
97.1.168.192.in-addr.arpa.	IN	PTR	control-plane0.ocp4.example.com. (4)
98.1.168.192.in-addr.arpa.	IN	PTR	control-plane1.ocp4.example.com. (4)
99.1.168.192.in-addr.arpa.	IN	PTR	control-plane2.ocp4.example.com. (4)
;
11.1.168.192.in-addr.arpa.	IN	PTR	compute0.ocp4.example.com. (5)
7.1.168.192.in-addr.arpa.	IN	PTR	compute1.ocp4.example.com. (5)
;
;EOF
1 Provides reverse DNS resolution for the Kubernetes API. The PTR record refers to the record name of the API load balancer.
2 Provides reverse DNS resolution for the Kubernetes API. The PTR record refers to the record name of the API load balancer and is used for internal cluster communications.
3 Provides reverse DNS resolution for the bootstrap machine.
4 Provides reverse DNS resolution for the control plane machines.
5 Provides reverse DNS resolution for the compute machines.

A PTR record is not required for the OpenShift Container Platform application wildcard.

Load balancing requirements for user-provisioned infrastructure

Before you install OpenShift Container Platform, you must provision the API and application Ingress load balancing infrastructure. In production scenarios, you can deploy the API and application Ingress load balancers separately so that you can scale the load balancer infrastructure for each in isolation.

If you want to deploy the API and application Ingress load balancers with a Red Hat Enterprise Linux (RHEL) instance, you must purchase the RHEL subscription separately.

The load balancing infrastructure must meet the following requirements:

  1. API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:

    • Layer 4 load balancing only. This can be referred to as Raw TCP or SSL Passthrough mode.

    • A stateless load balancing algorithm. The options vary based on the load balancer implementation.

    Do not configure session persistence for an API load balancer. Configuring session persistence for a Kubernetes API server might cause performance issues from excess application traffic for your OpenShift Container Platform cluster and the Kubernetes API that runs inside the cluster.

    Configure the following ports on both the front and back of the load balancers:

    Table 10. API load balancer
    Port Back-end machines (pool members) Internal External Description

    6443

    Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.

    X

    X

    Kubernetes API server

    22623

    Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.

    X

    Machine config server

    The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /readyz endpoint to the removal of the API server instance from the pool. Within the time frame after /readyz returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.

  2. Application Ingress load balancer: Provides an ingress point for application traffic flowing in from outside the cluster. A working configuration for the Ingress router is required for an OpenShift Container Platform cluster.

    Configure the following conditions:

    • Layer 4 load balancing only. This can be referred to as Raw TCP or SSL Passthrough mode.

    • A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.

    If the true IP address of the client can be seen by the application Ingress load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.

    Configure the following ports on both the front and back of the load balancers:

    Table 11. Application Ingress load balancer
    Port Back-end machines (pool members) Internal External Description

    443

    The machines that run the Ingress Controller pods, compute, or worker, by default.

    X

    X

    HTTPS traffic

    80

    The machines that run the Ingress Controller pods, compute, or worker, by default.

    X

    X

    HTTP traffic

    If you are deploying a three-node cluster with zero compute nodes, the Ingress Controller pods run on the control plane nodes. In three-node cluster deployments, you must configure your application Ingress load balancer to route HTTP and HTTPS traffic to the control plane nodes.

Example load balancer configuration for user-provisioned clusters

This section provides an example API and application Ingress load balancer configuration that meets the load balancing requirements for user-provisioned clusters. The sample is an /etc/haproxy/haproxy.cfg configuration for an HAProxy load balancer. The example is not meant to provide advice for choosing one load balancing solution over another.

In the example, the same load balancer is used for the Kubernetes API and application ingress traffic. In production scenarios, you can deploy the API and application ingress load balancers separately so that you can scale the load balancer infrastructure for each in isolation.

If you are using HAProxy as a load balancer and SELinux is set to enforcing, you must ensure that the HAProxy service can bind to the configured TCP port by running setsebool -P haproxy_connect_any=1.

Sample API and application Ingress load balancer configuration
global
  log         127.0.0.1 local2
  pidfile     /var/run/haproxy.pid
  maxconn     4000
  daemon
defaults
  mode                    http
  log                     global
  option                  dontlognull
  option http-server-close
  option                  redispatch
  retries                 3
  timeout http-request    10s
  timeout queue           1m
  timeout connect         10s
  timeout client          1m
  timeout server          1m
  timeout http-keep-alive 10s
  timeout check           10s
  maxconn                 3000
listen api-server-6443 (1)
  bind *:6443
  mode tcp
  option  httpchk GET /readyz HTTP/1.0
  option  log-health-checks
  balance roundrobin
  server bootstrap bootstrap.ocp4.example.com:6443 verify none check check-ssl inter 10s fall 2 rise 3 backup (2)
  server master0 master0.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s fall 2 rise 3
  server master1 master1.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s fall 2 rise 3
  server master2 master2.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s fall 2 rise 3
listen machine-config-server-22623 (3)
  bind *:22623
  mode tcp
  server bootstrap bootstrap.ocp4.example.com:22623 check inter 1s backup (2)
  server master0 master0.ocp4.example.com:22623 check inter 1s
  server master1 master1.ocp4.example.com:22623 check inter 1s
  server master2 master2.ocp4.example.com:22623 check inter 1s
listen ingress-router-443 (4)
  bind *:443
  mode tcp
  balance source
  server worker0 worker0.ocp4.example.com:443 check inter 1s
  server worker1 worker1.ocp4.example.com:443 check inter 1s
listen ingress-router-80 (5)
  bind *:80
  mode tcp
  balance source
  server worker0 worker0.ocp4.example.com:80 check inter 1s
  server worker1 worker1.ocp4.example.com:80 check inter 1s
1 Port 6443 handles the Kubernetes API traffic and points to the control plane machines.
2 The bootstrap entries must be in place before the OpenShift Container Platform cluster installation and they must be removed after the bootstrap process is complete.
3 Port 22623 handles the machine config server traffic and points to the control plane machines.
4 Port 443 handles the HTTPS traffic and points to the machines that run the Ingress Controller pods. The Ingress Controller pods run on the compute machines by default.
5 Port 80 handles the HTTP traffic and points to the machines that run the Ingress Controller pods. The Ingress Controller pods run on the compute machines by default.

If you are deploying a three-node cluster with zero compute nodes, the Ingress Controller pods run on the control plane nodes. In three-node cluster deployments, you must configure your application Ingress load balancer to route HTTP and HTTPS traffic to the control plane nodes.

If you are using HAProxy as a load balancer, you can check that the haproxy process is listening on ports 6443, 22623, 443, and 80 by running netstat -nltupe on the HAProxy node.

Preparing the user-provisioned infrastructure

Before you install OpenShift Container Platform on user-provisioned infrastructure, you must prepare the underlying infrastructure.

This section provides details about the high-level steps required to set up your cluster infrastructure in preparation for an OpenShift Container Platform installation. This includes configuring IP networking and network connectivity for your cluster nodes, enabling the required ports through your firewall, and setting up the required DNS and load balancing infrastructure.

After preparation, your cluster infrastructure must meet the requirements outlined in the Requirements for a cluster with user-provisioned infrastructure section.

Prerequisites
Procedure
  1. If you are using DHCP to provide the IP networking configuration to your cluster nodes, configure your DHCP service.

    1. Add persistent IP addresses for the nodes to your DHCP server configuration. In your configuration, match the MAC address of the relevant network interface to the intended IP address for each node.

    2. When you use DHCP to configure IP addressing for the cluster machines, the machines also obtain the DNS server information through DHCP. Define the persistent DNS server address that is used by the cluster nodes through your DHCP server configuration.

      If you are not using a DHCP service, you must provide the IP networking configuration and the address of the DNS server to the nodes at RHCOS install time. These can be passed as boot arguments if you are installing from an ISO image. See the Installing RHCOS and starting the OpenShift Container Platform bootstrap process section for more information about static IP provisioning and advanced networking options.

    3. Define the hostnames of your cluster nodes in your DHCP server configuration. See the Setting the cluster node hostnames through DHCP section for details about hostname considerations.

      If you are not using a DHCP service, the cluster nodes obtain their hostname through a reverse DNS lookup.

  2. Ensure that your network infrastructure provides the required network connectivity between the cluster components. See the Networking requirements for user-provisioned infrastructure section for details about the requirements.

  3. Configure your firewall to enable the ports required for the OpenShift Container Platform cluster components to communicate. See Networking requirements for user-provisioned infrastructure section for details about the ports that are required.

    By default, port 1936 is accessible for an OpenShift Container Platform cluster, because each control plane node needs access to this port.

    Avoid using the Ingress load balancer to expose this port, because doing so might result in the exposure of sensitive information, such as statistics and metrics, related to Ingress Controllers.

  4. Setup the required DNS infrastructure for your cluster.

    1. Configure DNS name resolution for the Kubernetes API, the application wildcard, the bootstrap machine, the control plane machines, and the compute machines.

    2. Configure reverse DNS resolution for the Kubernetes API, the bootstrap machine, the control plane machines, and the compute machines.

      See the User-provisioned DNS requirements section for more information about the OpenShift Container Platform DNS requirements.

  5. Validate your DNS configuration.

    1. From your installation node, run DNS lookups against the record names of the Kubernetes API, the wildcard routes, and the cluster nodes. Validate that the IP addresses in the responses correspond to the correct components.

    2. From your installation node, run reverse DNS lookups against the IP addresses of the load balancer and the cluster nodes. Validate that the record names in the responses correspond to the correct components.

      See the Validating DNS resolution for user-provisioned infrastructure section for detailed DNS validation steps.

  6. Provision the required API and application ingress load balancing infrastructure. See the Load balancing requirements for user-provisioned infrastructure section for more information about the requirements.

Some load balancing solutions require the DNS name resolution for the cluster nodes to be in place before the load balancing is initialized.

Validating DNS resolution for user-provisioned infrastructure

You can validate your DNS configuration before installing OpenShift Container Platform on user-provisioned infrastructure.

The validation steps detailed in this section must succeed before you install your cluster.

Prerequisites
  • You have configured the required DNS records for your user-provisioned infrastructure.

Procedure
  1. From your installation node, run DNS lookups against the record names of the Kubernetes API, the wildcard routes, and the cluster nodes. Validate that the IP addresses contained in the responses correspond to the correct components.

    1. Perform a lookup against the Kubernetes API record name. Check that the result points to the IP address of the API load balancer:

      $ dig +noall +answer @<nameserver_ip> api.<cluster_name>.<base_domain> (1)
      1 Replace <nameserver_ip> with the IP address of the nameserver, <cluster_name> with your cluster name, and <base_domain> with your base domain name.
      Example output
      api.ocp4.example.com.		604800	IN	A	192.168.1.5
    2. Perform a lookup against the Kubernetes internal API record name. Check that the result points to the IP address of the API load balancer:

      $ dig +noall +answer @<nameserver_ip> api-int.<cluster_name>.<base_domain>
      Example output
      api-int.ocp4.example.com.		604800	IN	A	192.168.1.5
    3. Test an example *.apps.<cluster_name>.<base_domain> DNS wildcard lookup. All of the application wildcard lookups must resolve to the IP address of the application ingress load balancer:

      $ dig +noall +answer @<nameserver_ip> random.apps.<cluster_name>.<base_domain>
      Example output
      random.apps.ocp4.example.com.		604800	IN	A	192.168.1.5

      In the example outputs, the same load balancer is used for the Kubernetes API and application ingress traffic. In production scenarios, you can deploy the API and application ingress load balancers separately so that you can scale the load balancer infrastructure for each in isolation.

      You can replace random with another wildcard value. For example, you can query the route to the OpenShift Container Platform console:

      $ dig +noall +answer @<nameserver_ip> console-openshift-console.apps.<cluster_name>.<base_domain>
      Example output
      console-openshift-console.apps.ocp4.example.com. 604800 IN	A 192.168.1.5
    4. Run a lookup against the bootstrap DNS record name. Check that the result points to the IP address of the bootstrap node:

      $ dig +noall +answer @<nameserver_ip> bootstrap.<cluster_name>.<base_domain>
      Example output
      bootstrap.ocp4.example.com.		604800	IN	A	192.168.1.96
    5. Use this method to perform lookups against the DNS record names for the control plane and compute nodes. Check that the results correspond to the IP addresses of each node.

  2. From your installation node, run reverse DNS lookups against the IP addresses of the load balancer and the cluster nodes. Validate that the record names contained in the responses correspond to the correct components.

    1. Perform a reverse lookup against the IP address of the API load balancer. Check that the response includes the record names for the Kubernetes API and the Kubernetes internal API:

      $ dig +noall +answer @<nameserver_ip> -x 192.168.1.5
      Example output
      5.1.168.192.in-addr.arpa. 604800	IN	PTR	api-int.ocp4.example.com. (1)
      5.1.168.192.in-addr.arpa. 604800	IN	PTR	api.ocp4.example.com. (2)
      
      1 Provides the record name for the Kubernetes internal API.
      2 Provides the record name for the Kubernetes API.

      A PTR record is not required for the OpenShift Container Platform application wildcard. No validation step is needed for reverse DNS resolution against the IP address of the application ingress load balancer.

    2. Perform a reverse lookup against the IP address of the bootstrap node. Check that the result points to the DNS record name of the bootstrap node:

      $ dig +noall +answer @<nameserver_ip> -x 192.168.1.96
      Example output
      96.1.168.192.in-addr.arpa. 604800	IN	PTR	bootstrap.ocp4.example.com.
    3. Use this method to perform reverse lookups against the IP addresses for the control plane and compute nodes. Check that the results correspond to the DNS record names of each node.

Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure
  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
    1 Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"
      Example output
      Agent pid 31874
  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> (1)
    1 Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519
    Example output
    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Next steps
  • When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide the key to the installation program.

VMware vSphere region and zone enablement

You can deploy an OpenShift Container Platform cluster to multiple vSphere datacenters that run in a single VMware vCenter. Each datacenter can run multiple clusters. This configuration reduces the risk of a hardware failure or network outage that can cause your cluster to fail. To enable regions and zones, you must define multiple failure domains for your OpenShift Container Platform cluster.

The VMware vSphere region and zone enablement feature requires the vSphere Container Storage Interface (CSI) driver as the default storage driver in the cluster. As a result, the feature only available on a newly installed cluster.

A cluster that was upgraded from a previous release defaults to using the in-tree vSphere driver, so you must enable CSI automatic migration for the cluster. You can then configure multiple regions and zones for the upgraded cluster.

The default installation configuration deploys a cluster to a single vSphere datacenter. If you want to deploy a cluster to multiple vSphere datacenters, you must create an installation configuration file that enables the region and zone feature.

The default install-config.yaml file includes vcenters and failureDomains fields, where you can specify multiple vSphere datacenters and clusters for your OpenShift Container Platform cluster. You can leave these fields blank if you want to install an OpenShift Container Platform cluster in a vSphere environment that consists of single datacenter.

The following list describes terms associated with defining zones and regions for your cluster:

  • Failure domain: Establishes the relationships between a region and zone. You define a failure domain by using vCenter objects, such as a datastore object. A failure domain defines the vCenter location for OpenShift Container Platform cluster nodes.

  • Region: Specifies a vCenter datacenter. You define a region by using a tag from the openshift-region tag category.

  • Zone: Specifies a vCenter cluster. You define a zone by using a tag from the openshift-zone tag category.

If you plan on specifying more than one failure domain in your install-config.yaml file, you must create tag categories, zone tags, and region tags in advance of creating the configuration file.

You must create a vCenter tag for each vCenter datacenter, which represents a region. Additionally, you must create a vCenter tag for each cluster than runs in a datacenter, which represents a zone. After you create the tags, you must attach each tag to their respective datacenters and clusters.

The following table outlines an example of the relationship among regions, zones, and tags for a configuration with multiple vSphere datacenters running in a single VMware vCenter.

Datacenter (region) Cluster (zone) Tags

us-east

us-east-1

us-east-1a

us-east-1b

us-east-2

us-east-2a

us-east-2b

us-west

us-west-1

us-west-1a

us-west-1b

us-west-2

us-west-2a

us-west-2b

Manually creating the installation configuration file

Installing the cluster requires that you manually create the installation configuration file.

The Cluster Cloud Controller Manager Operator performs a connectivity check on a provided hostname or IP address. Ensure that you specify a hostname or an IP address to a reachable vCenter server. If you provide metadata to a non-existent vCenter server, installation of the cluster fails at the bootstrap stage.

Prerequisites
  • You have an SSH public key on your local machine to provide to the installation program. The key will be used for SSH authentication onto your cluster nodes for debugging and disaster recovery.

  • You have obtained the OpenShift Container Platform installation program and the pull secret for your cluster.

  • Obtain the imageContentSources section from the output of the command to mirror the repository.

  • Obtain the contents of the certificate for your mirror registry.

Procedure
  1. Create an installation directory to store your required installation assets in:

    $ mkdir <installation_directory>

    You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.

  2. Customize the sample install-config.yaml file template that is provided and save it in the <installation_directory>.

    You must name this configuration file install-config.yaml.

    • Unless you use a registry that RHCOS trusts by default, such as docker.io, you must provide the contents of the certificate for your mirror repository in the additionalTrustBundle section. In most cases, you must provide the certificate for your mirror.

    • You must include the imageContentSources section from the output of the command to mirror the repository.

  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.

Installation configuration parameters

Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.

After installation, you cannot modify these parameters in the install-config.yaml file.

Required configuration parameters

Required installation configuration parameters are described in the following table:

Table 12. Required parameters
Parameter Description Values

apiVersion

The API version for the install-config.yaml content. The current version is v1. The installation program may also support older API versions.

String

baseDomain

The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.

A fully-qualified domain or subdomain name, such as example.com.

metadata

Kubernetes resource ObjectMeta, from which only the name parameter is consumed.

Object

metadata.name

The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.

String of lowercase letters and hyphens (-), such as dev.

platform

The configuration for the specific platform upon which to perform the installation: alibabacloud, aws, baremetal, azure, gcp, ibmcloud, nutanix, openstack, ovirt, powervs, vsphere, or {}. For additional information about platform.<platform> parameters, consult the table for your specific platform that follows.

Object

pullSecret

Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.

{
   "auths":{
      "cloud.openshift.com":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      },
      "quay.io":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      }
   }
}

Network configuration parameters

You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.

  • If you use the Red Hat OpenShift Networking OVN-Kubernetes network plugin, both IPv4 and IPv6 address families are supported.

  • If you use the Red Hat OpenShift Networking OpenShift SDN network plugin, only the IPv4 address family is supported.

On VMware vSphere, dual-stack networking must specify IPv4 as the primary address family.

The following additional limitations apply to dual-stack networking:

  • Nodes report only their IPv6 IP address in node.status.addresses

  • Nodes with only a single NIC are supported

  • Pods configured for host networking report only their IPv6 addresses in pod.status.IP

If you configure your cluster to use both IP address families, review the following requirements:

  • Both IP families must use the same network interface for the default gateway.

  • Both IP families must have the default gateway.

  • You must specify IPv4 and IPv6 addresses in the same order for all network configuration parameters. For example, in the following configuration IPv4 addresses are listed before IPv6 addresses.

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  - cidr: fd00:10:128::/56
    hostPrefix: 64
  serviceNetwork:
  - 172.30.0.0/16
  - fd00:172:16::/112

Globalnet is not supported with Red Hat OpenShift Data Foundation disaster recovery solutions. For regional disaster recovery scenarios, ensure that you use a nonoverlapping range of private IP addresses for the cluster and service networks in each cluster.

Table 13. Network parameters
Parameter Description Values

networking

The configuration for the cluster network.

Object

You cannot modify parameters specified by the networking object after installation.

networking.networkType

The Red Hat OpenShift Networking network plugin to install.

Either OpenShiftSDN or OVNKubernetes. OpenShiftSDN is a CNI plugin for all-Linux networks. OVNKubernetes is a CNI plugin for Linux networks and hybrid networks that contain both Linux and Windows servers. The default value is OVNKubernetes.

networking.clusterNetwork

The IP address blocks for pods.

The default value is 10.128.0.0/14 with a host prefix of /23.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23

networking.clusterNetwork.cidr

Required if you use networking.clusterNetwork. An IP address block.

An IPv4 network.

An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.

networking.clusterNetwork.hostPrefix

The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.

A subnet prefix.

The default value is 23.

networking.serviceNetwork

The IP address block for services. The default value is 172.30.0.0/16.

The OpenShift SDN and OVN-Kubernetes network plugins support only a single IP address block for the service network.

An array with an IP address block in CIDR format. For example:

networking:
  serviceNetwork:
   - 172.30.0.0/16

networking.machineNetwork

The IP address blocks for machines.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  machineNetwork:
  - cidr: 10.0.0.0/16

networking.machineNetwork.cidr

Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt and IBM Power Virtual Server. For libvirt, the default value is 192.168.126.0/24. For IBM Power Virtual Server, the default value is 192.168.0.0/24.

An IP network block in CIDR notation.

For example, 10.0.0.0/16.

Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.

Optional configuration parameters

Optional installation configuration parameters are described in the following table:

Table 14. Optional parameters
Parameter Description Values

additionalTrustBundle

A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.

String

capabilities

Controls the installation of optional core cluster components. You can reduce the footprint of your OpenShift Container Platform cluster by disabling optional components. For more information, see the "Cluster capabilities" page in Installing.

String array

capabilities.baselineCapabilitySet

Selects an initial set of optional capabilities to enable. Valid values are None, v4.11, v4.12 and vCurrent. The default value is vCurrent.

String

capabilities.additionalEnabledCapabilities

Extends the set of optional capabilities beyond what you specify in baselineCapabilitySet. You may specify multiple capabilities in this parameter.

String array

cpuPartitioningMode

Enables workload partitioning, which isolates OpenShift Container Platform services, cluster management workloads, and infrastructure pods to run on a reserved set of CPUs. Workload partitioning can only be enabled during installation and cannot be disabled after installation. While this field enables workload partitioning, it does not configure workloads to use specific CPUs. For more information, see the Workload partitioning page in the Scalability and Performance section.

None or AllNodes. None is the default value.

compute

The configuration for the machines that comprise the compute nodes.

Array of MachinePool objects.

compute.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

compute.name

Required if you use compute. The name of the machine pool.

worker

compute.platform

Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, nutanix, openstack, ovirt, powervs, vsphere, or {}

compute.replicas

The number of compute machines, which are also known as worker machines, to provision.

A positive integer greater than or equal to 2. The default value is 3.

featureSet

Enables the cluster for a feature set. A feature set is a collection of OpenShift Container Platform features that are not enabled by default. For more information about enabling a feature set during installation, see "Enabling features using feature gates".

String. The name of the feature set to enable, such as TechPreviewNoUpgrade.

controlPlane

The configuration for the machines that comprise the control plane.

Array of MachinePool objects.

controlPlane.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

controlPlane.name

Required if you use controlPlane. The name of the machine pool.

master

controlPlane.platform

Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, nutanix, openstack, ovirt, powervs, vsphere, or {}

controlPlane.replicas

The number of control plane machines to provision.

The only supported value is 3, which is the default value.

credentialsMode

The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.

Not all CCO modes are supported for all cloud providers. For more information about CCO modes, see the Cloud Credential Operator entry in the Cluster Operators reference content.

If your AWS account has service control policies (SCP) enabled, you must configure the credentialsMode parameter to Mint, Passthrough or Manual.

Mint, Passthrough, Manual or an empty string ("").

imageContentSources

Sources and repositories for the release-image content.

Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.

imageContentSources.source

Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.

String

imageContentSources.mirrors

Specify one or more repositories that may also contain the same images.

Array of strings

publish

How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.

Internal or External. The default value is External.

Setting this field to Internal is not supported on non-cloud platforms.

If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.

sshKey

The SSH key to authenticate access to your cluster machines.

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

For example, sshKey: ssh-ed25519 AAAA...

  1. Not all CCO modes are supported for all cloud providers. For more information about CCO modes, see the "Managing cloud provider credentials" entry in the Authentication and authorization content.

Additional VMware vSphere configuration parameters

Additional VMware vSphere configuration parameters are described in the following table.

The platform.vsphere parameter prefixes each parameter listed in the table.

Table 15. Additional VMware vSphere cluster parameters
Parameter Description Values
platform:
  vsphere:

Describes your account on the cloud platform that hosts your cluster. You can use the parameter to customize the platform. If you provide additional configuration settings for compute and control plane machines in the machine pool, the parameter is not required. You can only specify one vCenter server for your OpenShift Container Platform cluster.

A dictionary of vSphere configuration objects

platform:
  vsphere:
    apiVIPs:

Virtual IP (VIP) addresses that you configured for control plane API access.

This parameter applies only to installer-provisioned infrastructure.

Multiple IP addresses

platform:
  vsphere:
    diskType:

Optional: The disk provisioning method. This value defaults to the vSphere default storage policy if not set.

Valid values are thin, thick, or eagerZeroedThick.

platform:
  vsphere:
    failureDomains:
      region:

If you define multiple failure domains for your cluster, you must attach the tag to each vCenter datacenter. To define a region, use a tag from the openshift-region tag category. For a single vSphere datacenter environment, you do not need to attach a tag, but you must enter an alphanumeric value, such as datacenter, for the parameter.

String

platform:
  vsphere:
    failureDomains:
      server:

Specifies the fully-qualified hostname or IP address of the VMware vCenter server, so that a client can access failure domain resources. You must apply the server role to the vSphere vCenter server location.

String

platform:
  vsphere:
    failureDomains:
      zone:

If you define multiple failure domains for your cluster, you must attach a tag to each vCenter cluster. To define a zone, use a tag from the openshift-zone tag category. For a single vSphere datacenter environment, you do not need to attach a tag, but you must enter an alphanumeric value, such as cluster, for the parameter.

String

platform:
  vsphere:
    failureDomains:
      topology:
        datacenter:

Lists and defines the datacenters where OpenShift Container Platform virtual machines (VMs) operate. The list of datacenters must match the list of datacenters specified in the vcenters field.

String

platform:
  vsphere:
    failureDomains:
      topology:
        datastore:

Specifies the path to a vSphere datastore that stores virtual machines files for a failure domain. You must apply the datastore role to the vSphere vCenter datastore location.

String

platform:
  vsphere:
    failureDomains:
      topology:
        folder:

Optional: The absolute path of an existing folder where the user creates the virtual machines, for example, /<datacenter_name>/vm/<folder_name>/<subfolder_name>. If you do not provide this value, the installation program creates a top-level folder in the datacenter virtual machine folder that is named with the infrastructure ID. If you are providing the infrastructure for the cluster and you do not want to use the default StorageClass object, named thin, you can omit the folder parameter from the install-config.yaml file.

String

platform:
  vsphere:
    failureDomains:
      topology:
        networks:

Lists any network in the vCenter instance that contains the virtual IP addresses and DNS records that you configured.

String

platform:
  vsphere:
    failureDomains:
      topology:
        resourcePool:

Optional: The absolute path of an existing resource pool where the installation program creates the virtual machines, for example, /<datacenter_name>/host/<cluster_name>/Resources/<resource_pool_name>/<optional_nested_resource_pool_name>. If you do not specify a value, the installation program installs the resources in the root of the cluster under /<datacenter_name>/host/<cluster_name>/Resources.

String

platform:
  vsphere:
    ingressVIPs:

Virtual IP (VIP) addresses that you configured for cluster Ingress.

This parameter applies only to installer-provisioned infrastructure.

Multiple IP addresses

platform:
  vsphere:
    vcenters:

Configures the connection details so that services can communicate with a vCenter server. Currently, only a single vCenter server is supported.

An array of vCenter configuration objects.

platform:
  vsphere:
    vcenters:
      datacenters:

Lists and defines the datacenters where OpenShift Container Platform virtual machines (VMs) operate. The list of datacenters must match the list of datacenters specified in the failureDomains field.

String

platform:
  vsphere:
    vcenters:
      password:

The password associated with the vSphere user.

String

platform:
  vsphere:
    vcenters:
      port:

The port number used to communicate with the vCenter server.

Integer

platform:
  vsphere:
    vcenters:
      server:

The fully qualified host name (FQHN) or IP address of the vCenter server.

String

platform:
  vsphere:
    vcenters:
      user:

The username associated with the vSphere user.

String

Deprecated VMware vSphere configuration parameters

In OpenShift Container Platform 4.13, the following vSphere configuration parameters are deprecated. You can continue to use these parameters, but the installation program does not automatically specify these parameters in the install-config.yaml file.

The following table lists each deprecated vSphere configuration parameter.

The platform.vsphere parameter prefixes each parameter listed in the table.

Table 16. Deprecated VMware vSphere cluster parameters
Parameter Description Values
platform:
  vsphere:
    apiVIP:

The virtual IP (VIP) address that you configured for control plane API access.

In OpenShift Container Platform 4.12 and later, the apiVIP configuration setting is deprecated. Instead, use a List format to enter a value in the apiVIPs configuration setting.

An IP address, for example 128.0.0.1.

platform:
  vsphere:
    cluster:

The vCenter cluster to install the OpenShift Container Platform cluster in.

String

platform:
  vsphere:
    datacenter:

Defines the datacenter where OpenShift Container Platform virtual machines (VMs) operate.

String

platform:
  vsphere:
    defaultDatastore:

The name of the default datastore to use for provisioning volumes.

String

platform:
  vsphere:
    folder:

Optional: The absolute path of an existing folder where the installation program creates the virtual machines. If you do not provide this value, the installation program creates a folder that is named with the infrastructure ID in the data center virtual machine folder.

String, for example, /<datacenter_name>/vm/<folder_name>/<subfolder_name>.

platform:
  vsphere:
    ingressVIP:

Virtual IP (VIP) addresses that you configured for cluster Ingress.

In OpenShift Container Platform 4.12 and later, the ingressVIP configuration setting is deprecated. Instead, use a List format to enter a value in the ingressVIPs configuration setting.

An IP address, for example 128.0.0.1.

platform:
  vsphere:
    network:

The network in the vCenter instance that contains the virtual IP addresses and DNS records that you configured.

String

platform:
  vsphere:
    password:

The password for the vCenter user name.

String

platform:
  vsphere:
    resourcePool:

Optional: The absolute path of an existing resource pool where the installation program creates the virtual machines. If you do not specify a value, the installation program installs the resources in the root of the cluster under /<datacenter_name>/host/<cluster_name>/Resources.

String, for example, /<datacenter_name>/host/<cluster_name>/Resources/<resource_pool_name>/<optional_nested_resource_pool_name>.

platform:
  vsphere:
    username:

The user name to use to connect to the vCenter instance with. This user must have at least the roles and privileges that are required for static or dynamic persistent volume provisioning in vSphere.

String

platform:
  vsphere:
    vCenter:

The fully-qualified hostname or IP address of a vCenter server.

String

Optional VMware vSphere machine pool configuration parameters

Optional VMware vSphere machine pool configuration parameters are described in the following table.

The platform.vsphere parameter prefixes each parameter listed in the table.

Table 17. Optional VMware vSphere machine pool parameters
Parameter Description Values

clusterOSImage

The location from which the installation program downloads the RHCOS image. You must set this parameter to perform an installation in a restricted network.

An HTTP or HTTPS URL, optionally with a SHA-256 checksum. For example, https://mirror.openshift.com/images/rhcos-<version>-vmware.<architecture>.ova.

osDisk.diskSizeGB

The size of the disk in gigabytes.

Integer

cpus

The total number of virtual processor cores to assign a virtual machine. The value of platform.vsphere.cpus must be a multiple of platform.vsphere.coresPerSocket value.

Integer

coresPerSocket

The number of cores per socket in a virtual machine. The number of virtual sockets on the virtual machine is platform.vsphere.cpus/platform.vsphere.coresPerSocket. The default value for control plane nodes and worker nodes is 4 and 2, respectively.

Integer

memoryMB

The size of a virtual machine’s memory in megabytes.

Integer

Sample install-config.yaml file for VMware vSphere

You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

additionalTrustBundlePolicy: Proxyonly
apiVersion: v1
baseDomain: example.com (1)
compute: (2)
- architecture: amd64
  name: <worker_node>
  platform: {}
  replicas: 0 (3)
controlPlane: (2)
  architecture: amd64
  name: <parent_node>
  platform: {}
  replicas: 3 (4)
metadata:
  creationTimestamp: null
  name: test (5)
networking:
---
platform:
  vsphere:
    failureDomains: (6)
    - name: <failure_domain_name>
      region: <default_region_name>
      server: <fully_qualified_domain_name>
      topology:
        computeCluster: "/<datacenter>/host/<cluster>"
        datacenter: <datacenter> (7)
        datastore: "/<datacenter>/datastore/<datastore>" (8)
        networks:
        - <VM_Network_name>
        resourcePool: "/<datacenter>/host/<cluster>/Resources/<resourcePool>" (9)
        folder: "/<datacenter_name>/vm/<folder_name>/<subfolder_name>" (10)
      zone: <default_zone_name>
    vcenters:
    - datacenters:
      - <datacenter>
      password: <password> (11)
      port: 443
      server: <fully_qualified_domain_name> (12)
      user: administrator@vsphere.local
    diskType: thin (13)
fips: false (14)
pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' (15)
sshKey: 'ssh-ed25519 AAAA...' (16)
additionalTrustBundle: | (17)
  -----BEGIN CERTIFICATE-----
  ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
  -----END CERTIFICATE-----
imageContentSources: (18)
- mirrors:
  - <mirror_host_name>:<mirror_port>/<repo_name>/release
  source: <source_image_1>
- mirrors:
  - <mirror_host_name>:<mirror_port>/<repo_name>/release-images
  source: <source_image_2>
1 The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
2 The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Both sections define a single machine pool, so only one control plane is used. OpenShift Container Platform does not support defining multiple compute pools.
3 You must set the value of the replicas parameter to 0. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform.
4 The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
5 The cluster name that you specified in your DNS records.
6 Establishes the relationships between a region and zone. You define a failure domain by using vCenter objects, such as a datastore object. A failure domain defines the vCenter location for OpenShift Container Platform cluster nodes.
7 The vSphere datacenter.
8 The path to the vSphere datastore that holds virtual machine files, templates, and ISO images.

You can specify the path of any datastore that exists in a datastore cluster. By default, Storage vMotion is automatically enabled for a datastore cluster. Red Hat does not support Storage vMotion, so you must disable Storage vMotion to avoid data loss issues for your OpenShift Container Platform cluster.

If you must specify VMs across multiple datastores, use a datastore object to specify a failure domain in your cluster’s install-config.yaml configuration file. For more information, see "VMware vSphere region and zone enablement".

9 Optional: For installer-provisioned infrastructure, the absolute path of an existing resource pool where the installation program creates the virtual machines, for example, /<datacenter_name>/host/<cluster_name>/Resources/<resource_pool_name>/<optional_nested_resource_pool_name>. If you do not specify a value, resources are installed in the root of the cluster /example_datacenter/host/example_cluster/Resources.
10 Optional: For installer-provisioned infrastructure, the absolute path of an existing folder where the installation program creates the virtual machines, for example, /<datacenter_name>/vm/<folder_name>/<subfolder_name>. If you do not provide this value, the installation program creates a top-level folder in the datacenter virtual machine folder that is named with the infrastructure ID. If you are providing the infrastructure for the cluster and you do not want to use the default StorageClass object, named thin, you can omit the folder parameter from the install-config.yaml file.
11 The password associated with the vSphere user.
12 The fully-qualified hostname or IP address of the vCenter server.

The Cluster Cloud Controller Manager Operator performs a connectivity check on a provided hostname or IP address. Ensure that you specify a hostname or an IP address to a reachable vCenter server. If you provide metadata to a non-existent vCenter server, installation of the cluster fails at the bootstrap stage.

13 The vSphere disk provisioning method.
14 Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.

OpenShift Container Platform 4.13 is based on Red Hat Enterprise Linux (RHEL) 9.2. RHEL 9.2 cryptographic modules have not yet been submitted for FIPS validation. For more information, see "About this release" in the 4.13 OpenShift Container Platform Release Notes.

15 For <local_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example registry.example.com or registry.example.com:5000. For <credentials>, specify the base64-encoded user name and password for your mirror registry.
16 The public portion of the default SSH key for the core user in Red Hat Enterprise Linux CoreOS (RHCOS).

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

17 Provide the contents of the certificate file that you used for your mirror registry.
18 Provide the imageContentSources section from the output of the command to mirror the repository.

Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites
  • You have an existing install-config.yaml file.

  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure
  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
      httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
      noProxy: example.com (3)
    additionalTrustBundle: | (4)
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> (5)
    1 A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2 A proxy URL to use for creating HTTPS connections outside the cluster.
    3 A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations. You must include vCenter’s IP address and the IP range that you use for its machines.
    4 If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    5 Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.

    The installation program does not support the proxy readinessEndpoints field.

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Only the Proxy object named cluster is supported, and no additional proxies can be created.

Configuring regions and zones for a VMware vCenter

You can modify the default installation configuration file, so that you can deploy an OpenShift Container Platform cluster to multiple vSphere datacenters that run in a single VMware vCenter.

The default install-config.yaml file configuration from the previous release of OpenShift Container Platform is deprecated. You can continue to use the deprecated default configuration, but the openshift-installer will prompt you with a warning message that indicates the use of deprecated fields in the configuration file.

The example uses the govc command. The govc command is an open source command available from VMware; it is not available from Red Hat. The Red Hat support team does not maintain the govc command. Instructions for downloading and installing govc are found on the VMware documentation website

Prerequisites
  • You have an existing install-config.yaml installation configuration file.

    You must specify at least one failure domain for your OpenShift Container Platform cluster, so that you can provision datacenter objects for your VMware vCenter server. Consider specifying multiple failure domains if you need to provision virtual machine nodes in different datacenters, clusters, datastores, and other components. To enable regions and zones, you must define multiple failure domains for your OpenShift Container Platform cluster.

Procedure
  1. Enter the following govc command-line tool commands to create the openshift-region and openshift-zone vCenter tag categories:

    If you specify different names for the openshift-region and openshift-zone vCenter tag categories, the installation of the OpenShift Container Platform cluster fails.

    $ govc tags.category.create -d "OpenShift region" openshift-region
    $ govc tags.category.create -d "OpenShift zone" openshift-zone
  2. To create a region tag for each region vSphere datacenter where you want to deploy your cluster, enter the following command in your terminal:

    $ govc tags.create -c <region_tag_category> <region_tag>
  3. To create a zone tag for each vSphere cluster where you want to deploy your cluster, enter the following command:

    $ govc tags.create -c <zone_tag_category> <zone_tag>
  4. Attach region tags to each vCenter datacenter object by entering the following command:

    $ govc tags.attach -c <region_tag_category> <region_tag_1> /<datacenter_1>
  5. Attach the zone tags to each vCenter datacenter object by entering the following command:

    $ govc tags.attach -c <zone_tag_category> <zone_tag_1> /<datacenter_1>/host/vcs-mdcnc-workload-1
  6. Change to the directory that contains the installation program and initialize the cluster deployment according to your chosen installation requirements.

Sample install-config.yaml file with multiple datacenters defined in a vSphere center
---
compute:
---
  vsphere:
      zones:
        - "<machine_pool_zone_1>"
        - "<machine_pool_zone_2>"
---
controlPlane:
---
vsphere:
      zones:
        - "<machine_pool_zone_1>"
        - "<machine_pool_zone_2>"
---
platform:
  vsphere:
    vcenters:
---
    datacenters:
      - <datacenter1_name>
      - <datacenter2_name>
    failureDomains:
    - name: <machine_pool_zone_1>
      region: <region_tag_1>
      zone: <zone_tag_1>
      server: <fully_qualified_domain_name>
      topology:
        datacenter: <datacenter1>
        computeCluster: "/<datacenter1>/host/<cluster1>"
        networks:
        - <VM_Network1_name>
        datastore: "/<datacenter1>/datastore/<datastore1>"
        resourcePool: "/<datacenter1>/host/<cluster1>/Resources/<resourcePool1>"
        folder: "/<datacenter1>/vm/<folder1>"
    - name: <machine_pool_zone_2>
      region: <region_tag_2>
      zone: <zone_tag_2>
      server: <fully_qualified_domain_name>
      topology:
        datacenter: <datacenter2>
        computeCluster: "/<datacenter2>/host/<cluster2>"
        networks:
        - <VM_Network2_name>
        datastore: "/<datacenter2>/datastore/<datastore2>"
        resourcePool: "/<datacenter2>/host/<cluster2>/Resources/<resourcePool2>"
        folder: "/<datacenter2>/vm/<folder2>"
---

Creating the Kubernetes manifest and Ignition config files

Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to configure the machines.

The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to configure the cluster machines.

  • The Ignition config files that the OpenShift Container Platform installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.

  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

Prerequisites
  • You obtained the OpenShift Container Platform installation program. For a restricted network installation, these files are on your mirror host.

  • You created the install-config.yaml installation configuration file.

Procedure
  1. Change to the directory that contains the OpenShift Container Platform installation program and generate the Kubernetes manifests for the cluster:

    $ ./openshift-install create manifests --dir <installation_directory> (1)
    1 For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
  2. Remove the Kubernetes manifest files that define the control plane machines and compute machine sets:

    $ rm -f openshift/99_openshift-cluster-api_master-machines-*.yaml openshift/99_openshift-cluster-api_worker-machineset-*.yaml

    Because you create and manage these resources yourself, you do not have to initialize them.

    • You can preserve the compute machine set files to create compute machines by using the machine API, but you must update references to them to match your environment.

  3. Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:

    1. Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.

    2. Locate the mastersSchedulable parameter and ensure that it is set to false.

    3. Save and exit the file.

  4. To create the Ignition configuration files, run the following command from the directory that contains the installation program:

    $ ./openshift-install create ignition-configs --dir <installation_directory> (1)
    1 For <installation_directory>, specify the same installation directory.

    Ignition config files are created for the bootstrap, control plane, and compute nodes in the installation directory. The kubeadmin-password and kubeconfig files are created in the ./<installation_directory>/auth directory:

    .
    ├── auth
    │   ├── kubeadmin-password
    │   └── kubeconfig
    ├── bootstrap.ign
    ├── master.ign
    ├── metadata.json
    └── worker.ign

Configuring chrony time service

You must set the time server and related settings used by the chrony time service (chronyd) by modifying the contents of the chrony.conf file and passing those contents to your nodes as a machine config.

Procedure
  1. Create a Butane config including the contents of the chrony.conf file. For example, to configure chrony on worker nodes, create a 99-worker-chrony.bu file.

    See "Creating machine configs with Butane" for information about Butane.

    variant: openshift
    version: 4.13.0
    metadata:
      name: 99-worker-chrony (1)
      labels:
        machineconfiguration.openshift.io/role: worker (1)
    storage:
      files:
      - path: /etc/chrony.conf
        mode: 0644 (2)
        overwrite: true
        contents:
          inline: |
            pool 0.rhel.pool.ntp.org iburst (3)
            driftfile /var/lib/chrony/drift
            makestep 1.0 3
            rtcsync
            logdir /var/log/chrony
    1 On control plane nodes, substitute master for worker in both of these locations.
    2 Specify an octal value mode for the mode field in the machine config file. After creating the file and applying the changes, the mode is converted to a decimal value. You can check the YAML file with the command oc get mc <mc-name> -o yaml.
    3 Specify any valid, reachable time source, such as the one provided by your DHCP server.
  2. Use Butane to generate a MachineConfig object file, 99-worker-chrony.yaml, containing the configuration to be delivered to the nodes:

    $ butane 99-worker-chrony.bu -o 99-worker-chrony.yaml
  3. Apply the configurations in one of two ways:

    • If the cluster is not running yet, after you generate manifest files, add the MachineConfig object file to the <installation_directory>/openshift directory, and then continue to create the cluster.

    • If the cluster is already running, apply the file:

      $ oc apply -f ./99-worker-chrony.yaml

Extracting the infrastructure name

The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your cluster in VMware vSphere. If you plan to use the cluster identifier as the name of your virtual machine folder, you must extract it.

Prerequisites
  • You obtained the OpenShift Container Platform installation program and the pull secret for your cluster.

  • You generated the Ignition config files for your cluster.

  • You installed the jq package.

Procedure
  • To extract and view the infrastructure name from the Ignition config file metadata, run the following command:

    $ jq -r .infraID <installation_directory>/metadata.json (1)
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.
    Example output
    openshift-vw9j6 (1)
    
    1 The output of this command is your cluster name and a random string.

Installing RHCOS and starting the OpenShift Container Platform bootstrap process

To install OpenShift Container Platform on user-provisioned infrastructure on VMware vSphere, you must install Red Hat Enterprise Linux CoreOS (RHCOS) on vSphere hosts. When you install RHCOS, you must provide the Ignition config file that was generated by the OpenShift Container Platform installation program for the type of machine you are installing. If you have configured suitable networking, DNS, and load balancing infrastructure, the OpenShift Container Platform bootstrap process begins automatically after the RHCOS machines have rebooted.

Prerequisites
  • You have obtained the Ignition config files for your cluster.

  • You have access to an HTTP server that you can access from your computer and that the machines that you create can access.

  • You have created a vSphere cluster.

Procedure
  1. Upload the bootstrap Ignition config file, which is named <installation_directory>/bootstrap.ign, that the installation program created to your HTTP server. Note the URL of this file.

  2. Save the following secondary Ignition config file for your bootstrap node to your computer as <installation_directory>/merge-bootstrap.ign:

    {
      "ignition": {
        "config": {
          "merge": [
            {
              "source": "<bootstrap_ignition_config_url>", (1)
              "verification": {}
            }
          ]
        },
        "timeouts": {},
        "version": "3.2.0"
      },
      "networkd": {},
      "passwd": {},
      "storage": {},
      "systemd": {}
    }
    1 Specify the URL of the bootstrap Ignition config file that you hosted.

    When you create the virtual machine (VM) for the bootstrap machine, you use this Ignition config file.

  3. Locate the following Ignition config files that the installation program created:

    • <installation_directory>/master.ign

    • <installation_directory>/worker.ign

    • <installation_directory>/merge-bootstrap.ign

  4. Convert the Ignition config files to Base64 encoding. Later in this procedure, you must add these files to the extra configuration parameter guestinfo.ignition.config.data in your VM.

    For example, if you use a Linux operating system, you can use the base64 command to encode the files.

    $ base64 -w0 <installation_directory>/master.ign > <installation_directory>/master.64
    $ base64 -w0 <installation_directory>/worker.ign > <installation_directory>/worker.64
    $ base64 -w0 <installation_directory>/merge-bootstrap.ign > <installation_directory>/merge-bootstrap.64

    If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.

  5. Obtain the RHCOS OVA image. Images are available from the RHCOS image mirror page.

    The RHCOS images might not change with every release of OpenShift Container Platform. You must download an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available.

    The filename contains the OpenShift Container Platform version number in the format rhcos-vmware.<architecture>.ova.

  6. In the vSphere Client, create a folder in your datacenter to store your VMs.

    1. Click the VMs and Templates view.

    2. Right-click the name of your datacenter.

    3. Click New FolderNew VM and Template Folder.

    4. In the window that is displayed, enter the folder name. If you did not specify an existing folder in the install-config.yaml file, then create a folder with the same name as the infrastructure ID. You use this folder name so vCenter dynamically provisions storage in the appropriate location for its Workspace configuration.

  7. In the vSphere Client, create a template for the OVA image and then clone the template as needed.

    In the following steps, you create a template and then clone the template for all of your cluster machines. You then provide the location for the Ignition config file for that cloned machine type when you provision the VMs.

    1. From the Hosts and Clusters tab, right-click your cluster name and select Deploy OVF Template.

    2. On the Select an OVF tab, specify the name of the RHCOS OVA file that you downloaded.

    3. On the Select a name and folder tab, set a Virtual machine name for your template, such as Template-RHCOS. Click the name of your vSphere cluster and select the folder you created in the previous step.

    4. On the Select a compute resource tab, click the name of your vSphere cluster.

    5. On the Select storage tab, configure the storage options for your VM.

      • Select Thin Provision or Thick Provision, based on your storage preferences.

      • Select the datastore that you specified in your install-config.yaml file.

      • If you want to encrypt your virtual machines, select Encrypt this virtual machine. See the section titled "Requirements for encrypting virtual machines" for more information.

    6. On the Select network tab, specify the network that you configured for the cluster, if available.

    7. When creating the OVF template, do not specify values on the Customize template tab or configure the template any further.

      Do not start the original VM template. The VM template must remain off and must be cloned for new RHCOS machines. Starting the VM template configures the VM template as a VM on the platform, which prevents it from being used as a template that compute machine sets can apply configurations to.

  8. Optional: Update the configured virtual hardware version in the VM template, if necessary. Follow Upgrading a virtual machine to the latest hardware version in the VMware documentation for more information.

    It is recommended that you update the hardware version of the VM template to version 15 before creating VMs from it, if necessary. Using hardware version 13 for your cluster nodes running on vSphere is now deprecated. If your imported template defaults to hardware version 13, you must ensure that your ESXi host is on 6.7U3 or later before upgrading the VM template to hardware version 15. If your vSphere version is less than 6.7U3, you can skip this upgrade step; however, a future version of OpenShift Container Platform is scheduled to remove support for hardware version 13 and vSphere versions less than 6.7U3.

  9. After the template deploys, deploy a VM for a machine in the cluster.

    1. Right-click the template name and click CloneClone to Virtual Machine.

    2. On the Select a name and folder tab, specify a name for the VM. You might include the machine type in the name, such as control-plane-0 or compute-1.

      Ensure that all virtual machine names across a vSphere installation are unique.

    3. On the Select a name and folder tab, select the name of the folder that you created for the cluster.

    4. On the Select a compute resource tab, select the name of a host in your datacenter.

    5. On the Select clone options tab, select Customize this virtual machine’s hardware.

    6. On the Customize hardware tab, click Advanced Parameters.

      The following configuration suggestions are for example purposes only. As a cluster administrator, you must configure resources according to the resource demands placed on your cluster. To best manage cluster resources, consider creating a resource pool from the cluster’s root resource pool.

      • Optional: Override default DHCP networking in vSphere. To enable static IP networking:

        • Set your static IP configuration:

          Example command
          $ export IPCFG="ip=<ip>::<gateway>:<netmask>:<hostname>:<iface>:none nameserver=srv1 [nameserver=srv2 [nameserver=srv3 [...]]]"
          Example command
          $ export IPCFG="ip=192.168.100.101::192.168.100.254:255.255.255.0:::none nameserver=8.8.8.8"
        • Set the guestinfo.afterburn.initrd.network-kargs property before you boot a VM from an OVA in vSphere:

          Example command
          $ govc vm.change -vm "<vm_name>" -e "guestinfo.afterburn.initrd.network-kargs=${IPCFG}"
      • Add the following configuration parameter names and values by specifying data in the Attribute and Values fields. Ensure that you select the Add button for each parameter that you create.

        • guestinfo.ignition.config.data: Locate the base-64 encoded files that you created previously in this procedure, and paste the contents of the base64-encoded Ignition config file for this machine type.

        • guestinfo.ignition.config.data.encoding: Specify base64.

        • disk.EnableUUID: Specify TRUE.

        • stealclock.enable: If this parameter was not defined, add it and specify TRUE.

        • Create a child resource pool from the cluster’s root resource pool. Perform resource allocation in this child resource pool.

    7. In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type.

    8. Complete the remaining configuration steps. On clicking the Finish button, you have completed the cloning operation.

    9. From the Virtual Machines tab, right-click on your VM and then select PowerPower On.

    10. Check the console output to verify that Ignition ran.

      Example command
      Ignition: ran on 2022/03/14 14:48:33 UTC (this boot)
      Ignition: user-provided config was applied
Next steps
  • Create the rest of the machines for your cluster by following the preceding steps for each machine.

    You must create the bootstrap and control plane machines at this time. Because some pods are deployed on compute machines by default, also create at least two compute machines before you install the cluster.

Adding more compute machines to a cluster in vSphere

You can add more compute machines to a user-provisioned OpenShift Container Platform cluster on VMware vSphere.

After your vSphere template deploys in your OpenShift Container Platform cluster, you can deploy a virtual machine (VM) for a machine in that cluster.

Prerequisites
  • Obtain the base64-encoded Ignition file for your compute machines.

  • You have access to the vSphere template that you created for your cluster.

Procedure
  1. Right-click the template’s name and click CloneClone to Virtual Machine.

  2. On the Select a name and folder tab, specify a name for the VM. You might include the machine type in the name, such as compute-1.

    Ensure that all virtual machine names across a vSphere installation are unique.

  3. On the Select a name and folder tab, select the name of the folder that you created for the cluster.

  4. On the Select a compute resource tab, select the name of a host in your datacenter.

  5. On the Select storage tab, select storage for your configuration and disk files.

  6. On the Select clone options tab, select Customize this virtual machine’s hardware.

  7. On the Customize hardware tab, click Advanced Parameters.

    • Add the following configuration parameter names and values by specifying data in the Attribute and Values fields. Ensure that you select the Add button for each parameter that you create.

      • guestinfo.ignition.config.data: Paste the contents of the base64-encoded compute Ignition config file for this machine type.

      • guestinfo.ignition.config.data.encoding: Specify base64.

      • disk.EnableUUID: Specify TRUE.

  8. In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type. If many networks exist, select Add New Device > Network Adapter, and then enter your network information in the fields provided by the New Network menu item.

  9. Complete the remaining configuration steps. On clicking the Finish button, you have completed the cloning operation.

  10. From the Virtual Machines tab, right-click on your VM and then select PowerPower On.

Next steps
  • Continue to create more compute machines for your cluster.

Disk partitioning

In most cases, data partitions are originally created by installing RHCOS, rather than by installing another operating system. In such cases, the OpenShift Container Platform installer should be allowed to configure your disk partitions.

However, there are two cases where you might want to intervene to override the default partitioning when installing an OpenShift Container Platform node:

  • Create separate partitions: For greenfield installations on an empty disk, you might want to add separate storage to a partition. This is officially supported for making /var or a subdirectory of /var, such as /var/lib/etcd, a separate partition, but not both.

    For disk sizes larger than 100GB, and especially disk sizes larger than 1TB, create a separate /var partition. See "Creating a separate /var partition" and this Red Hat Knowledgebase article for more information.

    Kubernetes supports only two file system partitions. If you add more than one partition to the original configuration, Kubernetes cannot monitor all of them.

  • Retain existing partitions: For a brownfield installation where you are reinstalling OpenShift Container Platform on an existing node and want to retain data partitions installed from your previous operating system, there are both boot arguments and options to coreos-installer that allow you to retain existing data partitions.

Creating a separate /var partition

In general, disk partitioning for OpenShift Container Platform should be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.

OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var partition or a subdirectory of /var. For example:

  • /var/lib/containers: Holds container-related content that can grow as more images and containers are added to a system.

  • /var/lib/etcd: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage.

  • /var: Holds data that you might want to keep separate for purposes such as auditing.

    For disk sizes larger than 100GB, and especially larger than 1TB, create a separate /var partition.

Storing the contents of a /var directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.

Because /var must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var partition by creating a machine config manifest that is inserted during the openshift-install preparation phases of an OpenShift Container Platform installation.

Procedure
  1. Create a directory to hold the OpenShift Container Platform installation files:

    $ mkdir $HOME/clusterconfig
  2. Run openshift-install to create a set of files in the manifest and openshift subdirectories. Answer the system questions as you are prompted:

    $ openshift-install create manifests --dir $HOME/clusterconfig
    ? SSH Public Key ...
    $ ls $HOME/clusterconfig/openshift/
    99_kubeadmin-password-secret.yaml
    99_openshift-cluster-api_master-machines-0.yaml
    99_openshift-cluster-api_master-machines-1.yaml
    99_openshift-cluster-api_master-machines-2.yaml
    ...
  3. Create a Butane config that configures the additional partition. For example, name the file $HOME/clusterconfig/98-var-partition.bu, change the disk device name to the name of the storage device on the worker systems, and set the storage size as appropriate. This example places the /var directory on a separate partition:

    variant: openshift
    version: 4.13.0
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 98-var-partition
    storage:
      disks:
      - device: /dev/disk/by-id/<device_name> (1)
        partitions:
        - label: var
          start_mib: <partition_start_offset> (2)
          size_mib: <partition_size> (3)
          number: 5
      filesystems:
        - device: /dev/disk/by-partlabel/var
          path: /var
          format: xfs
          mount_options: [defaults, prjquota] (4)
          with_mount_unit: true
    1 The storage device name of the disk that you want to partition.
    2 When adding a data partition to the boot disk, a minimum value of 25000 mebibytes is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
    3 The size of the data partition in mebibytes.
    4 The prjquota mount option must be enabled for filesystems used for container storage.

    When creating a separate /var partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.

  4. Create a manifest from the Butane config and save it to the clusterconfig/openshift directory. For example, run the following command:

    $ butane $HOME/clusterconfig/98-var-partition.bu -o $HOME/clusterconfig/openshift/98-var-partition.yaml
  5. Run openshift-install again to create Ignition configs from a set of files in the manifest and openshift subdirectories:

    $ openshift-install create ignition-configs --dir $HOME/clusterconfig
    $ ls $HOME/clusterconfig/
    auth  bootstrap.ign  master.ign  metadata.json  worker.ign

Now you can use the Ignition config files as input to the vSphere installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.

Waiting for the bootstrap process to complete

The OpenShift Container Platform bootstrap process begins after the cluster nodes first boot into the persistent RHCOS environment that has been installed to disk. The configuration information provided through the Ignition config files is used to initialize the bootstrap process and install OpenShift Container Platform on the machines. You must wait for the bootstrap process to complete.

Prerequisites
  • You have created the Ignition config files for your cluster.

  • You have configured suitable network, DNS and load balancing infrastructure.

  • You have obtained the installation program and generated the Ignition config files for your cluster.

  • You installed RHCOS on your cluster machines and provided the Ignition config files that the OpenShift Container Platform installation program generated.

Procedure
  1. Monitor the bootstrap process:

    $ ./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ (1)
        --log-level=info (2)
    
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.
    2 To view different installation details, specify warn, debug, or error instead of info.
    Example output
    INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
    INFO API v1.26.0 up
    INFO Waiting up to 30m0s for bootstrapping to complete...
    INFO It is now safe to remove the bootstrap resources

    The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.

  2. After the bootstrap process is complete, remove the bootstrap machine from the load balancer.

    You must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the bootstrap machine itself.

Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites
  • You deployed an OpenShift Container Platform cluster.

  • You installed the oc CLI.

Procedure
  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami
    Example output
    system:admin

Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites
  • You added machines to your cluster.

Procedure
  1. Confirm that the cluster recognizes the machines:

    $ oc get nodes
    Example output
    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  63m  v1.26.0
    master-1  Ready     master  63m  v1.26.0
    master-2  Ready     master  64m  v1.26.0

    The output lists all of the machines that you created.

    The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.

  2. Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:

    $ oc get csr
    Example output
    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    ...

    In this example, two machines are joining the cluster. You might see more approved CSRs in the list.

  3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:

    Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.

    For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.

    • To approve them individually, run the following command for each valid CSR:

      $ oc adm certificate approve <csr_name> (1)
      1 <csr_name> is the name of a CSR from the list of current CSRs.
    • To approve all pending CSRs, run the following command:

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

      Some Operators might not become available until some CSRs are approved.

  4. Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:

    $ oc get csr
    Example output
    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       Pending
    csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       Pending
    ...
  5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:

    • To approve them individually, run the following command for each valid CSR:

      $ oc adm certificate approve <csr_name> (1)
      1 <csr_name> is the name of a CSR from the list of current CSRs.
    • To approve all pending CSRs, run the following command:

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
  6. After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:

    $ oc get nodes
    Example output
    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  73m  v1.26.0
    master-1  Ready     master  73m  v1.26.0
    master-2  Ready     master  74m  v1.26.0
    worker-0  Ready     worker  11m  v1.26.0
    worker-1  Ready     worker  11m  v1.26.0

    It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.

Additional information

Initial Operator configuration

After the control plane initializes, you must immediately configure some Operators so that they all become available.

Prerequisites
  • Your control plane has initialized.

Procedure
  1. Watch the cluster components come online:

    $ watch -n5 oc get clusteroperators
    Example output
    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
    authentication                             4.13.0    True        False         False      19m
    baremetal                                  4.13.0    True        False         False      37m
    cloud-credential                           4.13.0    True        False         False      40m
    cluster-autoscaler                         4.13.0    True        False         False      37m
    config-operator                            4.13.0    True        False         False      38m
    console                                    4.13.0    True        False         False      26m
    csi-snapshot-controller                    4.13.0    True        False         False      37m
    dns                                        4.13.0    True        False         False      37m
    etcd                                       4.13.0    True        False         False      36m
    image-registry                             4.13.0    True        False         False      31m
    ingress                                    4.13.0    True        False         False      30m
    insights                                   4.13.0    True        False         False      31m
    kube-apiserver                             4.13.0    True        False         False      26m
    kube-controller-manager                    4.13.0    True        False         False      36m
    kube-scheduler                             4.13.0    True        False         False      36m
    kube-storage-version-migrator              4.13.0    True        False         False      37m
    machine-api                                4.13.0    True        False         False      29m
    machine-approver                           4.13.0    True        False         False      37m
    machine-config                             4.13.0    True        False         False      36m
    marketplace                                4.13.0    True        False         False      37m
    monitoring                                 4.13.0    True        False         False      29m
    network                                    4.13.0    True        False         False      38m
    node-tuning                                4.13.0    True        False         False      37m
    openshift-apiserver                        4.13.0    True        False         False      32m
    openshift-controller-manager               4.13.0    True        False         False      30m
    openshift-samples                          4.13.0    True        False         False      32m
    operator-lifecycle-manager                 4.13.0    True        False         False      37m
    operator-lifecycle-manager-catalog         4.13.0    True        False         False      37m
    operator-lifecycle-manager-packageserver   4.13.0    True        False         False      32m
    service-ca                                 4.13.0    True        False         False      38m
    storage                                    4.13.0    True        False         False      37m
  2. Configure the Operators that are not available.

Disabling the default OperatorHub catalog sources

Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.

Procedure
  • Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:

    $ oc patch OperatorHub cluster --type json \
        -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

Alternatively, you can use the web console to manage catalog sources. From the AdministrationCluster SettingsConfigurationOperatorHub page, click the Sources tab, where you can create, update, delete, disable, and enable individual sources.

Image registry storage configuration

The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.

Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.

Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.

Configuring registry storage for VMware vSphere

As a cluster administrator, following installation you must configure your registry to use storage.

Prerequisites
  • Cluster administrator permissions.

  • A cluster on VMware vSphere.

  • Persistent storage provisioned for your cluster, such as Red Hat OpenShift Data Foundation.

    OpenShift Container Platform supports ReadWriteOnce access for image registry storage when you have only one replica. ReadWriteOnce access also requires that the registry uses the Recreate rollout strategy. To deploy an image registry that supports high availability with two or more replicas, ReadWriteMany access is required.

  • Must have "100Gi" capacity.

Testing shows issues with using the NFS server on RHEL as storage backend for core services. This includes the OpenShift Container Registry and Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage. Therefore, using RHEL NFS to back PVs used by core services is not recommended.

Other NFS implementations on the marketplace might not have these issues. Contact the individual NFS implementation vendor for more information on any testing that was possibly completed against these OpenShift Container Platform core components.

Procedure
  1. To configure your registry to use storage, change the spec.storage.pvc in the configs.imageregistry/cluster resource.

    When you use shared storage, review your security settings to prevent outside access.

  2. Verify that you do not have a registry pod:

    $ oc get pod -n openshift-image-registry -l docker-registry=default
    Example output
    No resourses found in openshift-image-registry namespace

    If you do have a registry pod in your output, you do not need to continue with this procedure.

  3. Check the registry configuration:

    $ oc edit configs.imageregistry.operator.openshift.io
    Example output
    storage:
      pvc:
        claim: (1)
    1 Leave the claim field blank to allow the automatic creation of an image-registry-storage persistent volume claim (PVC). The PVC is generated based on the default storage class. However, be aware that the default storage class might provide ReadWriteOnce (RWO) volumes, such as a RADOS Block Device (RBD), which can cause issues when you replicate to more than one replica.
  4. Check the clusteroperator status:

    $ oc get clusteroperator image-registry
    Example output
    NAME             VERSION                              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
    image-registry   4.7                                  True        False         False      6h50m

Configuring storage for the image registry in non-production clusters

You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.

Procedure
  • To set the image registry storage to an empty directory:

    $ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'

    Configure this option for only non-production clusters.

    If you run this command before the Image Registry Operator initializes its components, the oc patch command fails with the following error:

    Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

    Wait a few minutes and run the command again.

Configuring block registry storage for VMware vSphere

To allow the image registry to use block storage types such as vSphere Virtual Machine Disk (VMDK) during upgrades as a cluster administrator, you can use the Recreate rollout strategy.

Block storage volumes are supported but not recommended for use with image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.

Procedure
  1. Enter the following command to set the image registry storage as a block storage type, patch the registry so that it uses the Recreate rollout strategy, and runs with only 1 replica:

    $ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'
  2. Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.

    1. Create a pvc.yaml file with the following contents to define a VMware vSphere PersistentVolumeClaim object:

      kind: PersistentVolumeClaim
      apiVersion: v1
      metadata:
        name: image-registry-storage (1)
        namespace: openshift-image-registry (2)
      spec:
        accessModes:
        - ReadWriteOnce (3)
        resources:
          requests:
            storage: 100Gi (4)
      1 A unique name that represents the PersistentVolumeClaim object.
      2 The namespace for the PersistentVolumeClaim object, which is openshift-image-registry.
      3 The access mode of the persistent volume claim. With ReadWriteOnce, the volume can be mounted with read and write permissions by a single node.
      4 The size of the persistent volume claim.
    2. Enter the following command to create the PersistentVolumeClaim object from the file:

      $ oc create -f pvc.yaml -n openshift-image-registry
  3. Enter the following command to edit the registry configuration so that it references the correct PVC:

    $ oc edit config.imageregistry.operator.openshift.io -o yaml
    Example output
    storage:
      pvc:
        claim: (1)
    1 By creating a custom PVC, you can leave the claim field blank for the default automatic creation of an image-registry-storage PVC.

For instructions about configuring registry storage so that it references the correct PVC, see Configuring the registry for vSphere.

Completing installation on user-provisioned infrastructure

After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.

Prerequisites
  • Your control plane has initialized.

  • You have completed the initial Operator configuration.

Procedure
  1. Confirm that all the cluster components are online with the following command:

    $ watch -n5 oc get clusteroperators
    Example output
    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
    authentication                             4.13.0    True        False         False      19m
    baremetal                                  4.13.0    True        False         False      37m
    cloud-credential                           4.13.0    True        False         False      40m
    cluster-autoscaler                         4.13.0    True        False         False      37m
    config-operator                            4.13.0    True        False         False      38m
    console                                    4.13.0    True        False         False      26m
    csi-snapshot-controller                    4.13.0    True        False         False      37m
    dns                                        4.13.0    True        False         False      37m
    etcd                                       4.13.0    True        False         False      36m
    image-registry                             4.13.0    True        False         False      31m
    ingress                                    4.13.0    True        False         False      30m
    insights                                   4.13.0    True        False         False      31m
    kube-apiserver                             4.13.0    True        False         False      26m
    kube-controller-manager                    4.13.0    True        False         False      36m
    kube-scheduler                             4.13.0    True        False         False      36m
    kube-storage-version-migrator              4.13.0    True        False         False      37m
    machine-api                                4.13.0    True        False         False      29m
    machine-approver                           4.13.0    True        False         False      37m
    machine-config                             4.13.0    True        False         False      36m
    marketplace                                4.13.0    True        False         False      37m
    monitoring                                 4.13.0    True        False         False      29m
    network                                    4.13.0    True        False         False      38m
    node-tuning                                4.13.0    True        False         False      37m
    openshift-apiserver                        4.13.0    True        False         False      32m
    openshift-controller-manager               4.13.0    True        False         False      30m
    openshift-samples                          4.13.0    True        False         False      32m
    operator-lifecycle-manager                 4.13.0    True        False         False      37m
    operator-lifecycle-manager-catalog         4.13.0    True        False         False      37m
    operator-lifecycle-manager-packageserver   4.13.0    True        False         False      32m
    service-ca                                 4.13.0    True        False         False      38m
    storage                                    4.13.0    True        False         False      37m

    Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:

    $ ./openshift-install --dir <installation_directory> wait-for install-complete (1)
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.
    Example output
    INFO Waiting up to 30m0s for the cluster to initialize...

    The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.

    • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.

    • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

  2. Confirm that the Kubernetes API server is communicating with the pods.

    1. To view a list of all pods, use the following command:

      $ oc get pods --all-namespaces
      Example output
      NAMESPACE                         NAME                                            READY   STATUS      RESTARTS   AGE
      openshift-apiserver-operator      openshift-apiserver-operator-85cb746d55-zqhs8   1/1     Running     1          9m
      openshift-apiserver               apiserver-67b9g                                 1/1     Running     0          3m
      openshift-apiserver               apiserver-ljcmx                                 1/1     Running     0          1m
      openshift-apiserver               apiserver-z25h4                                 1/1     Running     0          2m
      openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8        1/1     Running     0          5m
      ...
    2. View the logs for a pod that is listed in the output of the previous command by using the following command:

      $ oc logs <pod_name> -n <namespace> (1)
      1 Specify the pod name and namespace, as shown in the output of the previous command.

      If the pod logs display, the Kubernetes API server can communicate with the cluster machines.

  3. For an installation with Fibre Channel Protocol (FCP), additional steps are required to enable multipathing. Do not enable multipathing during installation.

    See "Enabling multipathing with kernel arguments on RHCOS" in the Post-installation machine configuration tasks documentation for more information.

  4. Register your cluster on the Cluster registration page.

You can add extra compute machines after the cluster installation is completed by following Adding compute machines to vSphere.

Configuring vSphere DRS anti-affinity rules for control plane nodes

vSphere Distributed Resource Scheduler (DRS) anti-affinity rules can be configured to support higher availability of OpenShift Container Platform Control Plane nodes. Anti-affinity rules ensure that the vSphere Virtual Machines for the OpenShift Container Platform Control Plane nodes are not scheduled to the same vSphere Host.

  • The following information applies to compute DRS only and does not apply to storage DRS.

  • The govc command is an open-source command available from VMware; it is not available from Red Hat. The govc command is not supported by the Red Hat support.

  • Instructions for downloading and installing govc are found on the VMware documentation website.

Create an anti-affinity rule by running the following command:

Example command
$ govc cluster.rule.create \
  -name openshift4-control-plane-group \
  -dc MyDatacenter -cluster MyCluster \
  -enable \
  -anti-affinity master-0 master-1 master-2

After creating the rule, your control plane nodes are automatically migrated by vSphere so they are not running on the same hosts. This might take some time while vSphere reconciles the new rule. Successful command completion is shown in the following procedure.

The migration occurs automatically and might cause brief OpenShift API outage or latency until the migration finishes.

The vSphere DRS anti-affinity rules need to be updated manually in the event of a control plane VM name change or migration to a new vSphere Cluster.

Procedure
  1. Remove any existing DRS anti-affinity rule by running the following command:

    $ govc cluster.rule.remove \
      -name openshift4-control-plane-group \
      -dc MyDatacenter -cluster MyCluster
    Example Output
    [13-10-22 09:33:24] Reconfigure /MyDatacenter/host/MyCluster...OK
  2. Create the rule again with updated names by running the following command:

    $ govc cluster.rule.create \
      -name openshift4-control-plane-group \
      -dc MyDatacenter -cluster MyOtherCluster \
      -enable \
      -anti-affinity master-0 master-1 master-2

Backing up VMware vSphere volumes

OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach and detach the volume on any node in the cluster. As a consequence, it is not possible to back up volumes that use snapshots, or to restore volumes from snapshots. See Snapshot Limitations for more information.

Procedure

To create a backup of persistent volumes:

  1. Stop the application that is using the persistent volume.

  2. Clone the persistent volume.

  3. Restart the application.

  4. Create a backup of the cloned volume.

  5. Delete the cloned volume.

Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.13, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager Hybrid Cloud Console.

After you confirm that your OpenShift Cluster Manager Hybrid Cloud Console inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

Next steps