×

The PTP Operator adds the NodePtpDevice.ptp.openshift.io custom resource definition (CRD) to OpenShift Container Platform.

When installed, the PTP Operator searches your cluster for Precision Time Protocol (PTP) capable network devices on each node. The Operator creates and updates a NodePtpDevice custom resource (CR) object for each node that provides a compatible PTP-capable network device.

Network interface controller (NIC) hardware with built-in PTP capabilities sometimes require a device-specific configuration. You can use hardware-specific NIC features for supported hardware with the PTP Operator by configuring a plugin in the PtpConfig custom resource (CR). The linuxptp-daemon service uses the named parameters in the plugin stanza to start linuxptp processes, ptp4l and phc2sys, based on the specific hardware configuration.

In OpenShift Container Platform 4.16, the Intel E810 NIC is supported with a PtpConfig plugin.

Installing the PTP Operator using the CLI

As a cluster administrator, you can install the Operator by using the CLI.

Prerequisites
  • A cluster installed on bare-metal hardware with nodes that have hardware that supports PTP.

  • Install the OpenShift CLI (oc).

  • Log in as a user with cluster-admin privileges.

Procedure
  1. Create a namespace for the PTP Operator.

    1. Save the following YAML in the ptp-namespace.yaml file:

      apiVersion: v1
      kind: Namespace
      metadata:
        name: openshift-ptp
        annotations:
          workload.openshift.io/allowed: management
        labels:
          name: openshift-ptp
          openshift.io/cluster-monitoring: "true"
    2. Create the Namespace CR:

      $ oc create -f ptp-namespace.yaml
  2. Create an Operator group for the PTP Operator.

    1. Save the following YAML in the ptp-operatorgroup.yaml file:

      apiVersion: operators.coreos.com/v1
      kind: OperatorGroup
      metadata:
        name: ptp-operators
        namespace: openshift-ptp
      spec:
        targetNamespaces:
        - openshift-ptp
    2. Create the OperatorGroup CR:

      $ oc create -f ptp-operatorgroup.yaml
  3. Subscribe to the PTP Operator.

    1. Save the following YAML in the ptp-sub.yaml file:

      apiVersion: operators.coreos.com/v1alpha1
      kind: Subscription
      metadata:
        name: ptp-operator-subscription
        namespace: openshift-ptp
      spec:
        channel: "stable"
        name: ptp-operator
        source: redhat-operators
        sourceNamespace: openshift-marketplace
    2. Create the Subscription CR:

      $ oc create -f ptp-sub.yaml
  4. To verify that the Operator is installed, enter the following command:

    $ oc get csv -n openshift-ptp -o custom-columns=Name:.metadata.name,Phase:.status.phase
    Example output
    Name                         Phase
    4.16.0-202301261535          Succeeded

Installing the PTP Operator by using the web console

As a cluster administrator, you can install the PTP Operator by using the web console.

You have to create the namespace and Operator group as mentioned in the previous section.

Procedure
  1. Install the PTP Operator using the OpenShift Container Platform web console:

    1. In the OpenShift Container Platform web console, click OperatorsOperatorHub.

    2. Choose PTP Operator from the list of available Operators, and then click Install.

    3. On the Install Operator page, under A specific namespace on the cluster select openshift-ptp. Then, click Install.

  2. Optional: Verify that the PTP Operator installed successfully:

    1. Switch to the OperatorsInstalled Operators page.

    2. Ensure that PTP Operator is listed in the openshift-ptp project with a Status of InstallSucceeded.

      During installation an Operator might display a Failed status. If the installation later succeeds with an InstallSucceeded message, you can ignore the Failed message.

      If the Operator does not appear as installed, to troubleshoot further:

      • Go to the OperatorsInstalled Operators page and inspect the Operator Subscriptions and Install Plans tabs for any failure or errors under Status.

      • Go to the WorkloadsPods page and check the logs for pods in the openshift-ptp project.

Discovering PTP-capable network devices in your cluster

Identify PTP-capable network devices that exist in your cluster so that you can configure them

Prerequisties
  • You installed the PTP Operator.

Procedure
  • To return a complete list of PTP capable network devices in your cluster, run the following command:

    $ oc get NodePtpDevice -n openshift-ptp -o yaml
    Example output
    apiVersion: v1
    items:
    - apiVersion: ptp.openshift.io/v1
      kind: NodePtpDevice
      metadata:
        creationTimestamp: "2022-01-27T15:16:28Z"
        generation: 1
        name: dev-worker-0 (1)
        namespace: openshift-ptp
        resourceVersion: "6538103"
        uid: d42fc9ad-bcbf-4590-b6d8-b676c642781a
      spec: {}
      status:
        devices: (2)
        - name: eno1
        - name: eno2
        - name: eno3
        - name: eno4
        - name: enp5s0f0
        - name: enp5s0f1
    ...
    1 The value for the name parameter is the same as the name of the parent node.
    2 The devices collection includes a list of the PTP capable devices that the PTP Operator discovers for the node.

Configuring linuxptp services as a grandmaster clock

You can configure the linuxptp services (ptp4l, phc2sys, ts2phc) as grandmaster clock (T-GM) by creating a PtpConfig custom resource (CR) that configures the host NIC.

The ts2phc utility allows you to synchronize the system clock with the PTP grandmaster clock so that the node can stream precision clock signal to downstream PTP ordinary clocks and boundary clocks.

Use the following example PtpConfig CR as the basis to configure linuxptp services as T-GM for an Intel Westport Channel E810-XXVDA4T network interface.

To configure PTP fast events, set appropriate values for ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is used only when events are enabled. See "Configuring the PTP fast event notifications publisher" for more information.

Prerequisites
  • For T-GM clocks in production environments, install an Intel E810 Westport Channel NIC in the bare-metal cluster host.

  • Install the OpenShift CLI (oc).

  • Log in as a user with cluster-admin privileges.

  • Install the PTP Operator.

Procedure
  1. Create the PtpConfig CR. For example:

    1. Depending on your requirements, use one of the following T-GM configurations for your deployment. Save the YAML in the grandmaster-clock-ptp-config.yaml file:

      PTP grandmaster clock configuration for E810 NIC
      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: grandmaster
        namespace: openshift-ptp
        annotations: {}
      spec:
        profile:
          - name: "grandmaster"
            ptp4lOpts: "-2 --summary_interval -4"
            phc2sysOpts: -r -u 0 -m -w -N 8 -R 16 -s $iface_master -n 24
            ptpSchedulingPolicy: SCHED_FIFO
            ptpSchedulingPriority: 10
            ptpSettings:
              logReduce: "true"
            plugins:
              e810:
                enableDefaultConfig: false
                settings:
                  LocalMaxHoldoverOffSet: 1500
                  LocalHoldoverTimeout: 14400
                  MaxInSpecOffset: 100
                pins: $e810_pins
                #  "$iface_master":
                #    "U.FL2": "0 2"
                #    "U.FL1": "0 1"
                #    "SMA2": "0 2"
                #    "SMA1": "0 1"
                ublxCmds:
                  - args: #ubxtool -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1
                      - "-P"
                      - "29.20"
                      - "-z"
                      - "CFG-HW-ANT_CFG_VOLTCTRL,1"
                    reportOutput: false
                  - args: #ubxtool -P 29.20 -e GPS
                      - "-P"
                      - "29.20"
                      - "-e"
                      - "GPS"
                    reportOutput: false
                  - args: #ubxtool -P 29.20 -d Galileo
                      - "-P"
                      - "29.20"
                      - "-d"
                      - "Galileo"
                    reportOutput: false
                  - args: #ubxtool -P 29.20 -d GLONASS
                      - "-P"
                      - "29.20"
                      - "-d"
                      - "GLONASS"
                    reportOutput: false
                  - args: #ubxtool -P 29.20 -d BeiDou
                      - "-P"
                      - "29.20"
                      - "-d"
                      - "BeiDou"
                    reportOutput: false
                  - args: #ubxtool -P 29.20 -d SBAS
                      - "-P"
                      - "29.20"
                      - "-d"
                      - "SBAS"
                    reportOutput: false
                  - args: #ubxtool -P 29.20 -t -w 5 -v 1 -e SURVEYIN,600,50000
                      - "-P"
                      - "29.20"
                      - "-t"
                      - "-w"
                      - "5"
                      - "-v"
                      - "1"
                      - "-e"
                      - "SURVEYIN,600,50000"
                    reportOutput: true
                  - args: #ubxtool -P 29.20 -p MON-HW
                      - "-P"
                      - "29.20"
                      - "-p"
                      - "MON-HW"
                    reportOutput: true
                  - args: #ubxtool -P 29.20 -p CFG-MSG,1,38,248
                      - "-P"
                      - "29.20"
                      - "-p"
                      - "CFG-MSG,1,38,248"
                    reportOutput: true
            ts2phcOpts: " "
            ts2phcConf: |
              [nmea]
              ts2phc.master 1
              [global]
              use_syslog  0
              verbose 1
              logging_level 7
              ts2phc.pulsewidth 100000000
              #cat /dev/GNSS to find available serial port
              #example value of gnss_serialport is /dev/ttyGNSS_1700_0
              ts2phc.nmea_serialport $gnss_serialport
              [$iface_master]
              ts2phc.extts_polarity rising
              ts2phc.extts_correction 0
            ptp4lConf: |
              [$iface_master]
              masterOnly 1
              [$iface_master_1]
              masterOnly 1
              [$iface_master_2]
              masterOnly 1
              [$iface_master_3]
              masterOnly 1
              [global]
              #
              # Default Data Set
              #
              twoStepFlag 1
              priority1 128
              priority2 128
              domainNumber 24
              #utc_offset 37
              clockClass 6
              clockAccuracy 0x27
              offsetScaledLogVariance 0xFFFF
              free_running 0
              freq_est_interval 1
              dscp_event 0
              dscp_general 0
              dataset_comparison G.8275.x
              G.8275.defaultDS.localPriority 128
              #
              # Port Data Set
              #
              logAnnounceInterval -3
              logSyncInterval -4
              logMinDelayReqInterval -4
              logMinPdelayReqInterval 0
              announceReceiptTimeout 3
              syncReceiptTimeout 0
              delayAsymmetry 0
              fault_reset_interval -4
              neighborPropDelayThresh 20000000
              masterOnly 0
              G.8275.portDS.localPriority 128
              #
              # Run time options
              #
              assume_two_step 0
              logging_level 6
              path_trace_enabled 0
              follow_up_info 0
              hybrid_e2e 0
              inhibit_multicast_service 0
              net_sync_monitor 0
              tc_spanning_tree 0
              tx_timestamp_timeout 50
              unicast_listen 0
              unicast_master_table 0
              unicast_req_duration 3600
              use_syslog 1
              verbose 0
              summary_interval -4
              kernel_leap 1
              check_fup_sync 0
              clock_class_threshold 7
              #
              # Servo Options
              #
              pi_proportional_const 0.0
              pi_integral_const 0.0
              pi_proportional_scale 0.0
              pi_proportional_exponent -0.3
              pi_proportional_norm_max 0.7
              pi_integral_scale 0.0
              pi_integral_exponent 0.4
              pi_integral_norm_max 0.3
              step_threshold 2.0
              first_step_threshold 0.00002
              clock_servo pi
              sanity_freq_limit  200000000
              ntpshm_segment 0
              #
              # Transport options
              #
              transportSpecific 0x0
              ptp_dst_mac 01:1B:19:00:00:00
              p2p_dst_mac 01:80:C2:00:00:0E
              udp_ttl 1
              udp6_scope 0x0E
              uds_address /var/run/ptp4l
              #
              # Default interface options
              #
              clock_type BC
              network_transport L2
              delay_mechanism E2E
              time_stamping hardware
              tsproc_mode filter
              delay_filter moving_median
              delay_filter_length 10
              egressLatency 0
              ingressLatency 0
              boundary_clock_jbod 0
              #
              # Clock description
              #
              productDescription ;;
              revisionData ;;
              manufacturerIdentity 00:00:00
              userDescription ;
              timeSource 0x20
        recommend:
          - profile: "grandmaster"
            priority: 4
            match:
              - nodeLabel: "node-role.kubernetes.io/$mcp"

      For E810 Westport Channel NICs, set the value for ts2phc.nmea_serialport to /dev/gnss0.

    2. Create the CR by running the following command:

      $ oc create -f grandmaster-clock-ptp-config.yaml
Verification
  1. Check that the PtpConfig profile is applied to the node.

    1. Get the list of pods in the openshift-ptp namespace by running the following command:

      $ oc get pods -n openshift-ptp -o wide
      Example output
      NAME                          READY   STATUS    RESTARTS   AGE     IP             NODE
      linuxptp-daemon-74m2g         3/3     Running   3          4d15h   10.16.230.7    compute-1.example.com
      ptp-operator-5f4f48d7c-x7zkf  1/1     Running   1          4d15h   10.128.1.145   compute-1.example.com
    2. Check that the profile is correct. Examine the logs of the linuxptp daemon that corresponds to the node you specified in the PtpConfig profile. Run the following command:

      $ oc logs linuxptp-daemon-74m2g -n openshift-ptp -c linuxptp-daemon-container
      Example output
      ts2phc[94980.334]: [ts2phc.0.config] nmea delay: 98690975 ns
      ts2phc[94980.334]: [ts2phc.0.config] ens3f0 extts index 0 at 1676577329.999999999 corr 0 src 1676577330.901342528 diff -1
      ts2phc[94980.334]: [ts2phc.0.config] ens3f0 master offset         -1 s2 freq      -1
      ts2phc[94980.441]: [ts2phc.0.config] nmea sentence: GNRMC,195453.00,A,4233.24427,N,07126.64420,W,0.008,,160223,,,A,V
      phc2sys[94980.450]: [ptp4l.0.config] CLOCK_REALTIME phc offset       943 s2 freq  -89604 delay    504
      phc2sys[94980.512]: [ptp4l.0.config] CLOCK_REALTIME phc offset      1000 s2 freq  -89264 delay    474

Configuring linuxptp services as a grandmaster clock for dual E810 Westport Channel NICs

You can configure the linuxptp services (ptp4l, phc2sys, ts2phc) as grandmaster clock (T-GM) for dual E810 Westport Channel NICs by creating a PtpConfig custom resource (CR) that configures the host NICs.

For distributed RAN (D-RAN) use cases, you can configure PTP for dual-NICs as follows:

  • NIC one is synced to the global navigation satellite system (GNSS) time source.

  • NIC two is synced to the 1PPS timing output provided by NIC one. This configuration is provided by the PTP hardware plugin in the PtpConfig CR.

The dual-NIC PTP T-GM configuration uses a single instance of ptp4l and one ts2phc process reporting two ts2phc instances, one for each NIC. The host system clock is synchronized from the NIC that is connected to the GNSS time source.

Use the following example PtpConfig CR as the basis to configure linuxptp services as T-GM for dual Intel Westport Channel E810-XXVDA4T network interfaces.

To configure PTP fast events, set appropriate values for ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is used only when events are enabled. See "Configuring the PTP fast event notifications publisher" for more information.

Prerequisites
  • For T-GM clocks in production environments, install two Intel E810 Westport Channel NICs in the bare-metal cluster host.

  • Install the OpenShift CLI (oc).

  • Log in as a user with cluster-admin privileges.

  • Install the PTP Operator.

Procedure
  1. Create the PtpConfig CR. For example:

    1. Save the following YAML in the grandmaster-clock-ptp-config-dual-nics.yaml file:

      PTP grandmaster clock configuration for dual E810 NICs
      # In this example two cards $iface_nic1 and $iface_nic2 are connected via
      # SMA1 ports by a cable and $iface_nic2 receives 1PPS signals from $iface_nic1
      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: grandmaster
        namespace: openshift-ptp
        annotations: {}
      spec:
        profile:
          - name: "grandmaster"
            ptp4lOpts: "-2 --summary_interval -4"
            phc2sysOpts: -r -u 0 -m -w -N 8 -R 16 -s $iface_nic1 -n 24
            ptpSchedulingPolicy: SCHED_FIFO
            ptpSchedulingPriority: 10
            ptpSettings:
              logReduce: "true"
            plugins:
              e810:
                enableDefaultConfig: false
                settings:
                  LocalMaxHoldoverOffSet: 1500
                  LocalHoldoverTimeout: 14400
                  MaxInSpecOffset: 100
                pins: $e810_pins
                #  "$iface_nic1":
                #    "U.FL2": "0 2"
                #    "U.FL1": "0 1"
                #    "SMA2": "0 2"
                #    "SMA1": "2 1"
                #  "$iface_nic2":
                #    "U.FL2": "0 2"
                #    "U.FL1": "0 1"
                #    "SMA2": "0 2"
                #    "SMA1": "1 1"
                ublxCmds:
                  - args: #ubxtool -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1
                      - "-P"
                      - "29.20"
                      - "-z"
                      - "CFG-HW-ANT_CFG_VOLTCTRL,1"
                    reportOutput: false
                  - args: #ubxtool -P 29.20 -e GPS
                      - "-P"
                      - "29.20"
                      - "-e"
                      - "GPS"
                    reportOutput: false
                  - args: #ubxtool -P 29.20 -d Galileo
                      - "-P"
                      - "29.20"
                      - "-d"
                      - "Galileo"
                    reportOutput: false
                  - args: #ubxtool -P 29.20 -d GLONASS
                      - "-P"
                      - "29.20"
                      - "-d"
                      - "GLONASS"
                    reportOutput: false
                  - args: #ubxtool -P 29.20 -d BeiDou
                      - "-P"
                      - "29.20"
                      - "-d"
                      - "BeiDou"
                    reportOutput: false
                  - args: #ubxtool -P 29.20 -d SBAS
                      - "-P"
                      - "29.20"
                      - "-d"
                      - "SBAS"
                    reportOutput: false
                  - args: #ubxtool -P 29.20 -t -w 5 -v 1 -e SURVEYIN,600,50000
                      - "-P"
                      - "29.20"
                      - "-t"
                      - "-w"
                      - "5"
                      - "-v"
                      - "1"
                      - "-e"
                      - "SURVEYIN,600,50000"
                    reportOutput: true
                  - args: #ubxtool -P 29.20 -p MON-HW
                      - "-P"
                      - "29.20"
                      - "-p"
                      - "MON-HW"
                    reportOutput: true
                  - args: #ubxtool -P 29.20 -p CFG-MSG,1,38,248
                      - "-P"
                      - "29.20"
                      - "-p"
                      - "CFG-MSG,1,38,248"
                    reportOutput: true
            ts2phcOpts: " "
            ts2phcConf: |
              [nmea]
              ts2phc.master 1
              [global]
              use_syslog  0
              verbose 1
              logging_level 7
              ts2phc.pulsewidth 100000000
              #cat /dev/GNSS to find available serial port
              #example value of gnss_serialport is /dev/ttyGNSS_1700_0
              ts2phc.nmea_serialport $gnss_serialport
              [$iface_nic1]
              ts2phc.extts_polarity rising
              ts2phc.extts_correction 0
              [$iface_nic2]
              ts2phc.master 0
              ts2phc.extts_polarity rising
              #this is a measured value in nanoseconds to compensate for SMA cable delay
              ts2phc.extts_correction -10
            ptp4lConf: |
              [$iface_nic1]
              masterOnly 1
              [$iface_nic1_1]
              masterOnly 1
              [$iface_nic1_2]
              masterOnly 1
              [$iface_nic1_3]
              masterOnly 1
              [$iface_nic2]
              masterOnly 1
              [$iface_nic2_1]
              masterOnly 1
              [$iface_nic2_2]
              masterOnly 1
              [$iface_nic2_3]
              masterOnly 1
              [global]
              #
              # Default Data Set
              #
              twoStepFlag 1
              priority1 128
              priority2 128
              domainNumber 24
              #utc_offset 37
              clockClass 6
              clockAccuracy 0x27
              offsetScaledLogVariance 0xFFFF
              free_running 0
              freq_est_interval 1
              dscp_event 0
              dscp_general 0
              dataset_comparison G.8275.x
              G.8275.defaultDS.localPriority 128
              #
              # Port Data Set
              #
              logAnnounceInterval -3
              logSyncInterval -4
              logMinDelayReqInterval -4
              logMinPdelayReqInterval 0
              announceReceiptTimeout 3
              syncReceiptTimeout 0
              delayAsymmetry 0
              fault_reset_interval -4
              neighborPropDelayThresh 20000000
              masterOnly 0
              G.8275.portDS.localPriority 128
              #
              # Run time options
              #
              assume_two_step 0
              logging_level 6
              path_trace_enabled 0
              follow_up_info 0
              hybrid_e2e 0
              inhibit_multicast_service 0
              net_sync_monitor 0
              tc_spanning_tree 0
              tx_timestamp_timeout 50
              unicast_listen 0
              unicast_master_table 0
              unicast_req_duration 3600
              use_syslog 1
              verbose 0
              summary_interval -4
              kernel_leap 1
              check_fup_sync 0
              clock_class_threshold 7
              #
              # Servo Options
              #
              pi_proportional_const 0.0
              pi_integral_const 0.0
              pi_proportional_scale 0.0
              pi_proportional_exponent -0.3
              pi_proportional_norm_max 0.7
              pi_integral_scale 0.0
              pi_integral_exponent 0.4
              pi_integral_norm_max 0.3
              step_threshold 2.0
              first_step_threshold 0.00002
              clock_servo pi
              sanity_freq_limit  200000000
              ntpshm_segment 0
              #
              # Transport options
              #
              transportSpecific 0x0
              ptp_dst_mac 01:1B:19:00:00:00
              p2p_dst_mac 01:80:C2:00:00:0E
              udp_ttl 1
              udp6_scope 0x0E
              uds_address /var/run/ptp4l
              #
              # Default interface options
              #
              clock_type BC
              network_transport L2
              delay_mechanism E2E
              time_stamping hardware
              tsproc_mode filter
              delay_filter moving_median
              delay_filter_length 10
              egressLatency 0
              ingressLatency 0
              boundary_clock_jbod 1
              #
              # Clock description
              #
              productDescription ;;
              revisionData ;;
              manufacturerIdentity 00:00:00
              userDescription ;
              timeSource 0x20
        recommend:
          - profile: "grandmaster"
            priority: 4
            match:
              - nodeLabel: "node-role.kubernetes.io/$mcp"

      For E810 Westport Channel NICs, set the value for ts2phc.nmea_serialport to /dev/gnss0.

    2. Create the CR by running the following command:

      $ oc create -f grandmaster-clock-ptp-config-dual-nics.yaml
Verification
  1. Check that the PtpConfig profile is applied to the node.

    1. Get the list of pods in the openshift-ptp namespace by running the following command:

      $ oc get pods -n openshift-ptp -o wide
      Example output
      NAME                          READY   STATUS    RESTARTS   AGE     IP             NODE
      linuxptp-daemon-74m2g         3/3     Running   3          4d15h   10.16.230.7    compute-1.example.com
      ptp-operator-5f4f48d7c-x7zkf  1/1     Running   1          4d15h   10.128.1.145   compute-1.example.com
    2. Check that the profile is correct. Examine the logs of the linuxptp daemon that corresponds to the node you specified in the PtpConfig profile. Run the following command:

      $ oc logs linuxptp-daemon-74m2g -n openshift-ptp -c linuxptp-daemon-container
      Example output
      ts2phc[509863.660]: [ts2phc.0.config] nmea delay: 347527248 ns
      ts2phc[509863.660]: [ts2phc.0.config] ens2f0 extts index 0 at 1705516553.000000000 corr 0 src 1705516553.652499081 diff 0
      ts2phc[509863.660]: [ts2phc.0.config] ens2f0 master offset          0 s2 freq      -0
      I0117 18:35:16.000146 1633226 stats.go:57] state updated for ts2phc =s2
      I0117 18:35:16.000163 1633226 event.go:417] dpll State s2, gnss State s2, tsphc state s2, gm state s2,
      ts2phc[1705516516]:[ts2phc.0.config] ens2f0 nmea_status 1 offset 0 s2
      GM[1705516516]:[ts2phc.0.config] ens2f0 T-GM-STATUS s2
      ts2phc[509863.677]: [ts2phc.0.config] ens7f0 extts index 0 at 1705516553.000000010 corr -10 src 1705516553.652499081 diff 0
      ts2phc[509863.677]: [ts2phc.0.config] ens7f0 master offset          0 s2 freq      -0
      I0117 18:35:16.016597 1633226 stats.go:57] state updated for ts2phc =s2
      phc2sys[509863.719]: [ptp4l.0.config] CLOCK_REALTIME phc offset        -6 s2 freq  +15441 delay    510
      phc2sys[509863.782]: [ptp4l.0.config] CLOCK_REALTIME phc offset        -7 s2 freq  +15438 delay    502

Grandmaster clock PtpConfig configuration reference

The following reference information describes the configuration options for the PtpConfig custom resource (CR) that configures the linuxptp services (ptp4l, phc2sys, ts2phc) as a grandmaster clock.

Table 1. PtpConfig configuration options for PTP Grandmaster clock
PtpConfig CR field Description

plugins

Specify an array of .exec.cmdline options that configure the NIC for grandmaster clock operation. Grandmaster clock configuration requires certain PTP pins to be disabled.

The plugin mechanism allows the PTP Operator to do automated hardware configuration. For the Intel Westport Channel NIC, when enableDefaultConfig is true, The PTP Operator runs a hard-coded script to do the required configuration for the NIC.

ptp4lOpts

Specify system configuration options for the ptp4l service. The options should not include the network interface name -i <interface> and service config file -f /etc/ptp4l.conf because the network interface name and the service config file are automatically appended.

ptp4lConf

Specify the required configuration to start ptp4l as a grandmaster clock. For example, the ens2f1 interface synchronizes downstream connected devices. For grandmaster clocks, set clockClass to 6 and set clockAccuracy to 0x27. Set timeSource to 0x20 for when receiving the timing signal from a Global navigation satellite system (GNSS).

tx_timestamp_timeout

Specify the maximum amount of time to wait for the transmit (TX) timestamp from the sender before discarding the data.

boundary_clock_jbod

Specify the JBOD boundary clock time delay value. This value is used to correct the time values that are passed between the network time devices.

phc2sysOpts

Specify system config options for the phc2sys service. If this field is empty the PTP Operator does not start the phc2sys service.

Ensure that the network interface listed here is configured as grandmaster and is referenced as required in the ts2phcConf and ptp4lConf fields.

ptpSchedulingPolicy

Configure the scheduling policy for ptp4l and phc2sys processes. Default value is SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO scheduling.

ptpSchedulingPriority

Set an integer value from 1-65 to configure FIFO priority for ptp4l and phc2sys processes when ptpSchedulingPolicy is set to SCHED_FIFO. The ptpSchedulingPriority field is not used when ptpSchedulingPolicy is set to SCHED_OTHER.

ptpClockThreshold

Optional. If ptpClockThreshold stanza is not present, default values are used for ptpClockThreshold fields. Stanza shows default ptpClockThreshold values. ptpClockThreshold values configure how long after the PTP master clock is disconnected before PTP events are triggered. holdOverTimeout is the time value in seconds before the PTP clock event state changes to FREERUN when the PTP master clock is disconnected. The maxOffsetThreshold and minOffsetThreshold settings configure offset values in nanoseconds that compare against the values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys offset value is outside this range, the PTP clock state is set to FREERUN. When the offset value is within this range, the PTP clock state is set to LOCKED.

ts2phcConf

Sets the configuration for the ts2phc command.

leapfile is the default path to the current leap seconds definition file in the PTP Operator container image.

ts2phc.nmea_serialport is the serial port device that is connected to the NMEA GPS clock source. When configured, the GNSS receiver is accessible on /dev/gnss<id>. If the host has multiple GNSS receivers, you can find the correct device by enumerating either of the following devices:

  • /sys/class/net/<eth_port>/device/gnss/

  • /sys/class/gnss/gnss<id>/device/

ts2phcOpts

Set options for the ts2phc command.

recommend

Specify an array of one or more recommend objects that define rules on how the profile should be applied to nodes.

.recommend.profile

Specify the .recommend.profile object name that is defined in the profile section.

.recommend.priority

Specify the priority with an integer value between 0 and 99. A larger number gets lower priority, so a priority of 99 is lower than a priority of 10. If a node can be matched with multiple profiles according to rules defined in the match field, the profile with the higher priority is applied to that node.

.recommend.match

Specify .recommend.match rules with nodeLabel or nodeName values.

.recommend.match.nodeLabel

Set nodeLabel with the key of the node.Labels field from the node object by using the oc get nodes --show-labels command. For example, node-role.kubernetes.io/worker.

.recommend.match.nodeName

Set nodeName with the value of the node.Name field from the node object by using the oc get nodes command. For example, compute-1.example.com.

Grandmaster clock class sync state reference

The following table describes the PTP grandmaster clock (T-GM) gm.ClockClass states. Clock class states categorize T-GM clocks based on their accuracy and stability with regard to the Primary Reference Time Clock (PRTC) or other timing source.

Holdover specification is the amount of time a PTP clock can maintain synchronization without receiving updates from the primary time source.

Table 2. T-GM clock class states
Clock class state Description

gm.ClockClass 6

T-GM clock is connected to a PRTC in LOCKED mode. For example, the PRTC is traceable to a GNSS time source.

gm.ClockClass 7

T-GM clock is in HOLDOVER mode, and within holdover specification. The clock source might not be traceable to a category 1 frequency source.

gm.ClockClass 140

T-GM clock is in HOLDOVER mode, is out of holdover specification, but it is still traceable to the category 1 frequency source.

gm.ClockClass 248

T-GM clock is in FREERUN mode.

Intel Westport Channel E810 hardware configuration reference

Use this information to understand how to use the Intel E810-XXVDA4T hardware plugin to configure the E810 network interface as PTP grandmaster clock. Hardware pin configuration determines how the network interface interacts with other components and devices in the system. The E810-XXVDA4T NIC has four connectors for external 1PPS signals: SMA1, SMA2, U.FL1, and U.FL2.

Table 3. Intel E810 NIC hardware connectors configuration
Hardware pin Recommended setting Description

U.FL1

0 1

Disables the U.FL1 connector input. The U.FL1 connector is output-only.

U.FL2

0 2

Disables the U.FL2 connector output. The U.FL2 connector is input-only.

SMA1

0 1

Disables the SMA1 connector input. The SMA1 connector is bidirectional.

SMA2

0 2

Disables the SMA2 connector output. The SMA2 connector is bidirectional.

SMA1 and U.FL1 connectors share channel one. SMA2 and U.FL2 connectors share channel two.

Set spec.profile.plugins.e810.ublxCmds parameters to configure the GNSS clock in the PtpConfig custom resource (CR). Each of these ublxCmds stanzas correspond to a configuration that is applied to the host NIC by using ubxtool commands. For example:

ublxCmds:
  - args: #ubxtool -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1
      - "-P"
      - "29.20"
      - "-z"
      - "CFG-HW-ANT_CFG_VOLTCTRL,1"
    reportOutput: false

The following table describes the equivalent ubxtool commands:

Table 4. Intel E810 ublxCmds configuration
ubxtool command Description

ubxtool -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1

Enables antenna voltage control. Enables antenna status to be reported in the UBX-MON-RF and UBX-INF-NOTICE log messages.

ubxtool -P 29.20 -e GPS

Enables the antenna to receive GPS signals.

ubxtool -P 29.20 -d Galileo

Configures the antenna to receive signal from the Galileo GPS satellite.

ubxtool -P 29.20 -d GLONASS

Disables the antenna from receiving signal from the GLONASS GPS satellite.

ubxtool -P 29.20 -d BeiDou

Disables the antenna from receiving signal from the BeiDou GPS satellite.

ubxtool -P 29.20 -d SBAS

Disables the antenna from receiving signal from the SBAS GPS satellite.

ubxtool -P 29.20 -t -w 5 -v 1 -e SURVEYIN,600,50000

Configures the GNSS receiver survey-in process to improve its initial position estimate. This can take up to 24 hours to achieve an optimal result.

ubxtool -P 29.20 -p MON-HW

Runs a single automated scan of the hardware and reports on the NIC state and configuration settings.

The E810 plugin implements the following interfaces:

Table 5. E810 plugin interfaces
Interface Description

OnPTPConfigChangeE810

Runs whenever you update the PtpConfig CR. The function parses the plugin options and applies the required configurations to the network device pins based on the configuration data.

AfterRunPTPCommandE810

Runs after launching the PTP processes and running the gpspipe PTP command. The function processes the plugin options and runs ubxtool commands, storing the output in the plugin-specific data.

PopulateHwConfigE810

Populates the NodePtpDevice CR based on hardware-specific data in the PtpConfig CR.

The E810 plugin has the following structs and variables:

Table 6. E810 plugin structs and variables
Struct Description

E810Opts

Represents options for the E810 plugin, including boolean flags and a map of network device pins.

E810UblxCmds

Represents configurations for ubxtool commands with a boolean flag and a slice of strings for command arguments.

E810PluginData

Holds plugin-specific data used during plugin execution.

Dual E810 Westport Channel NIC configuration reference

Use this information to understand how to use the Intel E810-XXVDA4T hardware plugin to configure a pair of E810 network interfaces as PTP grandmaster clock (T-GM).

Before you configure the dual-NIC cluster host, you must connect the two NICs with an SMA1 cable using the 1PPS faceplace connections.

When you configure a dual-NIC T-GM, you need to compensate for the 1PPS signal delay that occurs when you connect the NICs using the SMA1 connection ports. Various factors such as cable length, ambient temperature, and component and manufacturing tolerances can affect the signal delay. To compensate for the delay, you must calculate the specific value that you use to offset the signal delay.

Table 7. E810 dual-NIC T-GM PtpConfig CR reference
PtpConfig field Description

spec.profile.plugins.e810.pins

Configure the E810 hardware pins using the PTP Operator E810 hardware plugin.

  • Pin 2 1 enables the 1PPS OUT connection for SMA1 on NIC one.

  • Pin 1 1 enables the 1PPS IN connection for SMA1 on NIC two.

spec.profile.ts2phcConf

Use the ts2phcConf field to configure parameters for NIC one and NIC two. Set ts2phc.master 0 for NIC two. This configures the timing source for NIC two from the 1PPS input, not GNSS. Configure the ts2phc.extts_correction value for NIC two to compensate for the delay that is incurred for the specific SMA cable and cable length that you use. The value that you configure depends on your specific measurements and SMA1 cable length.

spec.profile.ptp4lConf

Set the value of boundary_clock_jbod to 1 to enable support for multiple NICs.

Configuring dynamic leap seconds handling for PTP grandmaster clocks

The PTP Operator container image includes the latest leap-seconds.list file that is available at the time of release. You can configure the PTP Operator to automatically update the leap second file by using Global Positioning System (GPS) announcements.

Leap second information is stored in an automatically generated ConfigMap resource named leap-configmap in the openshift-ptp namespace. The PTP Operator mounts the leap-configmap resource as a volume in the linuxptp-daemon pod that is accessible by the ts2phc process.

If the GPS satellite broadcasts new leap second data, the PTP Operator updates the leap-configmap resource with the new data. The ts2phc process picks up the changes automatically.

The following procedure is provided as reference. The 4.16 version of the PTP Operator enables automatic leap second management by default.

Prerequisites
  • You have installed the OpenShift CLI (oc).

  • You have logged in as a user with cluster-admin privileges.

  • You have installed the PTP Operator and configured a PTP grandmaster clock (T-GM) in the cluster.

Procedure
  1. Configure automatic leap second handling in the phc2sysOpts section of the PtpConfig CR. Set the following options:

    phc2sysOpts: -r -u 0 -m -w -N 8 -R 16 -S 2 -s ens2f0 -n 24 (1)
    1 Set -w to force phc2sys to wait until ptp4l has synchronized the system hardware clock before starting its own synchronization process.

    Previously, the T-GM required an offset adjustment in the phc2sys configuration (-O -37) to account for historical leap seconds. This is no longer needed.

  2. Configure the Intel e810 NIC to enable periodical reporting of NAV-TIMELS messages by the GPS receiver in the spec.profile.plugins.e810.ublxCmds section of the PtpConfig CR. For example:

    - args: #ubxtool -P 29.20 -p CFG-MSG,1,38,248
        - "-P"
        - "29.20"
        - "-p"
        - "CFG-MSG,1,38,248"
Verification
  1. Validate that the configured T-GM is receiving NAV-TIMELS messages from the connected GPS. Run the following command:

    $ oc -n openshift-ptp -c linuxptp-daemon-container exec -it $(oc -n openshift-ptp get pods -o name | grep daemon) -- ubxtool -t -p NAV-TIMELS -P 29.20
    Example output
    1722509534.4417
    UBX-NAV-STATUS:
      iTOW 384752000 gpsFix 5 flags 0xdd fixStat 0x0 flags2 0x8
      ttff 18261, msss 1367642864
    
    1722509534.4419
    UBX-NAV-TIMELS:
      iTOW 384752000 version 0 reserved2 0 0 0 srcOfCurrLs 2
      currLs 18 srcOfLsChange 2 lsChange 0 timeToLsEvent 70376866
      dateOfLsGpsWn 2441 dateOfLsGpsDn 7 reserved2 0 0 0
      valid x3
    
    1722509534.4421
    UBX-NAV-CLOCK:
      iTOW 384752000 clkB 784281 clkD 435 tAcc 3 fAcc 215
    
    1722509535.4477
    UBX-NAV-STATUS:
      iTOW 384753000 gpsFix 5 flags 0xdd fixStat 0x0 flags2 0x8
      ttff 18261, msss 1367643864
    
    1722509535.4479
    UBX-NAV-CLOCK:
      iTOW 384753000 clkB 784716 clkD 435 tAcc 3 fAcc 218
  2. Validate that the leap-configmap resource has been successfully generated by the PTP Operator and is up to date with the latest version of the leap-seconds.list. Run the following command:

    $ oc -n openshift-ptp get configmap leap-configmap -o jsonpath='{.data.<node_name>}' (1)
    1 Replace <node_name> with the node where you have installed and configured the PTP T-GM clock with automatic leap second management. Escape special characters in the node name. For example, node-1\.example\.com.
    Example output
    # Do not edit
    # This file is generated automatically by linuxptp-daemon
    #$  3913697179
    #@  4291747200
    2272060800     10    # 1 Jan 1972
    2287785600     11    # 1 Jul 1972
    2303683200     12    # 1 Jan 1973
    2335219200     13    # 1 Jan 1974
    2366755200     14    # 1 Jan 1975
    2398291200     15    # 1 Jan 1976
    2429913600     16    # 1 Jan 1977
    2461449600     17    # 1 Jan 1978
    2492985600     18    # 1 Jan 1979
    2524521600     19    # 1 Jan 1980
    2571782400     20    # 1 Jul 1981
    2603318400     21    # 1 Jul 1982
    2634854400     22    # 1 Jul 1983
    2698012800     23    # 1 Jul 1985
    2776982400     24    # 1 Jan 1988
    2840140800     25    # 1 Jan 1990
    2871676800     26    # 1 Jan 1991
    2918937600     27    # 1 Jul 1992
    2950473600     28    # 1 Jul 1993
    2982009600     29    # 1 Jul 1994
    3029443200     30    # 1 Jan 1996
    3076704000     31    # 1 Jul 1997
    3124137600     32    # 1 Jan 1999
    3345062400     33    # 1 Jan 2006
    3439756800     34    # 1 Jan 2009
    3550089600     35    # 1 Jul 2012
    3644697600     36    # 1 Jul 2015
    3692217600     37    # 1 Jan 2017
    
    #h  e65754d4 8f39962b aa854a61 661ef546 d2af0bfa

Configuring linuxptp services as a boundary clock

You can configure the linuxptp services (ptp4l, phc2sys) as boundary clock by creating a PtpConfig custom resource (CR) object.

Use the following example PtpConfig CR as the basis to configure linuxptp services as the boundary clock for your particular hardware and environment. This example CR does not configure PTP fast events. To configure PTP fast events, set appropriate values for ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is used only when events are enabled. See "Configuring the PTP fast event notifications publisher" for more information.

Prerequisites
  • Install the OpenShift CLI (oc).

  • Log in as a user with cluster-admin privileges.

  • Install the PTP Operator.

Procedure
  1. Create the following PtpConfig CR, and then save the YAML in the boundary-clock-ptp-config.yaml file.

    Example PTP boundary clock configuration
    apiVersion: ptp.openshift.io/v1
    kind: PtpConfig
    metadata:
      name: boundary-clock
      namespace: openshift-ptp
      annotations: {}
    spec:
      profile:
        - name: boundary-clock
          ptp4lOpts: "-2"
          phc2sysOpts: "-a -r -n 24"
          ptpSchedulingPolicy: SCHED_FIFO
          ptpSchedulingPriority: 10
          ptpSettings:
            logReduce: "true"
          ptp4lConf: |
            # The interface name is hardware-specific
            [$iface_slave]
            masterOnly 0
            [$iface_master_1]
            masterOnly 1
            [$iface_master_2]
            masterOnly 1
            [$iface_master_3]
            masterOnly 1
            [global]
            #
            # Default Data Set
            #
            twoStepFlag 1
            slaveOnly 0
            priority1 128
            priority2 128
            domainNumber 24
            #utc_offset 37
            clockClass 248
            clockAccuracy 0xFE
            offsetScaledLogVariance 0xFFFF
            free_running 0
            freq_est_interval 1
            dscp_event 0
            dscp_general 0
            dataset_comparison G.8275.x
            G.8275.defaultDS.localPriority 128
            #
            # Port Data Set
            #
            logAnnounceInterval -3
            logSyncInterval -4
            logMinDelayReqInterval -4
            logMinPdelayReqInterval -4
            announceReceiptTimeout 3
            syncReceiptTimeout 0
            delayAsymmetry 0
            fault_reset_interval -4
            neighborPropDelayThresh 20000000
            masterOnly 0
            G.8275.portDS.localPriority 128
            #
            # Run time options
            #
            assume_two_step 0
            logging_level 6
            path_trace_enabled 0
            follow_up_info 0
            hybrid_e2e 0
            inhibit_multicast_service 0
            net_sync_monitor 0
            tc_spanning_tree 0
            tx_timestamp_timeout 50
            unicast_listen 0
            unicast_master_table 0
            unicast_req_duration 3600
            use_syslog 1
            verbose 0
            summary_interval 0
            kernel_leap 1
            check_fup_sync 0
            clock_class_threshold 135
            #
            # Servo Options
            #
            pi_proportional_const 0.0
            pi_integral_const 0.0
            pi_proportional_scale 0.0
            pi_proportional_exponent -0.3
            pi_proportional_norm_max 0.7
            pi_integral_scale 0.0
            pi_integral_exponent 0.4
            pi_integral_norm_max 0.3
            step_threshold 2.0
            first_step_threshold 0.00002
            max_frequency 900000000
            clock_servo pi
            sanity_freq_limit 200000000
            ntpshm_segment 0
            #
            # Transport options
            #
            transportSpecific 0x0
            ptp_dst_mac 01:1B:19:00:00:00
            p2p_dst_mac 01:80:C2:00:00:0E
            udp_ttl 1
            udp6_scope 0x0E
            uds_address /var/run/ptp4l
            #
            # Default interface options
            #
            clock_type BC
            network_transport L2
            delay_mechanism E2E
            time_stamping hardware
            tsproc_mode filter
            delay_filter moving_median
            delay_filter_length 10
            egressLatency 0
            ingressLatency 0
            boundary_clock_jbod 0
            #
            # Clock description
            #
            productDescription ;;
            revisionData ;;
            manufacturerIdentity 00:00:00
            userDescription ;
            timeSource 0xA0
      recommend:
        - profile: boundary-clock
          priority: 4
          match:
            - nodeLabel: "node-role.kubernetes.io/$mcp"
    Table 8. PTP boundary clock CR configuration options
    CR field Description

    name

    The name of the PtpConfig CR.

    profile

    Specify an array of one or more profile objects.

    name

    Specify the name of a profile object which uniquely identifies a profile object.

    ptp4lOpts

    Specify system config options for the ptp4l service. The options should not include the network interface name -i <interface> and service config file -f /etc/ptp4l.conf because the network interface name and the service config file are automatically appended.

    ptp4lConf

    Specify the required configuration to start ptp4l as boundary clock. For example, ens1f0 synchronizes from a grandmaster clock and ens1f3 synchronizes connected devices.

    <interface_1>

    The interface that receives the synchronization clock.

    <interface_2>

    The interface that sends the synchronization clock.

    tx_timestamp_timeout

    For Intel Columbiaville 800 Series NICs, set tx_timestamp_timeout to 50.

    boundary_clock_jbod

    For Intel Columbiaville 800 Series NICs, ensure boundary_clock_jbod is set to 0. For Intel Fortville X710 Series NICs, ensure boundary_clock_jbod is set to 1.

    phc2sysOpts

    Specify system config options for the phc2sys service. If this field is empty, the PTP Operator does not start the phc2sys service.

    ptpSchedulingPolicy

    Scheduling policy for ptp4l and phc2sys processes. Default value is SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO scheduling.

    ptpSchedulingPriority

    Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys processes when ptpSchedulingPolicy is set to SCHED_FIFO. The ptpSchedulingPriority field is not used when ptpSchedulingPolicy is set to SCHED_OTHER.

    ptpClockThreshold

    Optional. If ptpClockThreshold is not present, default values are used for the ptpClockThreshold fields. ptpClockThreshold configures how long after the PTP master clock is disconnected before PTP events are triggered. holdOverTimeout is the time value in seconds before the PTP clock event state changes to FREERUN when the PTP master clock is disconnected. The maxOffsetThreshold and minOffsetThreshold settings configure offset values in nanoseconds that compare against the values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys offset value is outside this range, the PTP clock state is set to FREERUN. When the offset value is within this range, the PTP clock state is set to LOCKED.

    recommend

    Specify an array of one or more recommend objects that define rules on how the profile should be applied to nodes.

    .recommend.profile

    Specify the .recommend.profile object name defined in the profile section.

    .recommend.priority

    Specify the priority with an integer value between 0 and 99. A larger number gets lower priority, so a priority of 99 is lower than a priority of 10. If a node can be matched with multiple profiles according to rules defined in the match field, the profile with the higher priority is applied to that node.

    .recommend.match

    Specify .recommend.match rules with nodeLabel or nodeName values.

    .recommend.match.nodeLabel

    Set nodeLabel with the key of the node.Labels field from the node object by using the oc get nodes --show-labels command. For example, node-role.kubernetes.io/worker.

    .recommend.match.nodeName

    Set nodeName with the value of the node.Name field from the node object by using the oc get nodes command. For example, compute-1.example.com.

  2. Create the CR by running the following command:

    $ oc create -f boundary-clock-ptp-config.yaml
Verification
  1. Check that the PtpConfig profile is applied to the node.

    1. Get the list of pods in the openshift-ptp namespace by running the following command:

      $ oc get pods -n openshift-ptp -o wide
      Example output
      NAME                            READY   STATUS    RESTARTS   AGE   IP               NODE
      linuxptp-daemon-4xkbb           1/1     Running   0          43m   10.1.196.24      compute-0.example.com
      linuxptp-daemon-tdspf           1/1     Running   0          43m   10.1.196.25      compute-1.example.com
      ptp-operator-657bbb64c8-2f8sj   1/1     Running   0          43m   10.129.0.61      control-plane-1.example.com
    2. Check that the profile is correct. Examine the logs of the linuxptp daemon that corresponds to the node you specified in the PtpConfig profile. Run the following command:

      $ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container
      Example output
      I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
      I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
      I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
      I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
      I1115 09:41:17.117616 4143292 daemon.go:102] Interface:
      I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2
      I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
      I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

Configuring linuxptp services as boundary clocks for dual-NIC hardware

You can configure the linuxptp services (ptp4l, phc2sys) as boundary clocks for dual-NIC hardware by creating a PtpConfig custom resource (CR) object for each NIC.

Dual NIC hardware allows you to connect each NIC to the same upstream leader clock with separate ptp4l instances for each NIC feeding the downstream clocks.

Prerequisites
  • Install the OpenShift CLI (oc).

  • Log in as a user with cluster-admin privileges.

  • Install the PTP Operator.

Procedure
  1. Create two separate PtpConfig CRs, one for each NIC, using the reference CR in "Configuring linuxptp services as a boundary clock" as the basis for each CR. For example:

    1. Create boundary-clock-ptp-config-nic1.yaml, specifying values for phc2sysOpts:

      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: boundary-clock-ptp-config-nic1
        namespace: openshift-ptp
      spec:
        profile:
        - name: "profile1"
          ptp4lOpts: "-2 --summary_interval -4"
          ptp4lConf: | (1)
            [ens5f1]
            masterOnly 1
            [ens5f0]
            masterOnly 0
          ...
          phc2sysOpts: "-a -r -m -n 24 -N 8 -R 16" (2)
      1 Specify the required interfaces to start ptp4l as a boundary clock. For example, ens5f0 synchronizes from a grandmaster clock and ens5f1 synchronizes connected devices.
      2 Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon DaemonSet parses the logs and generates Prometheus metrics.
    2. Create boundary-clock-ptp-config-nic2.yaml, removing the phc2sysOpts field altogether to disable the phc2sys service for the second NIC:

      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: boundary-clock-ptp-config-nic2
        namespace: openshift-ptp
      spec:
        profile:
        - name: "profile2"
          ptp4lOpts: "-2 --summary_interval -4"
          ptp4lConf: | (1)
            [ens7f1]
            masterOnly 1
            [ens7f0]
            masterOnly 0
      ...
      1 Specify the required interfaces to start ptp4l as a boundary clock on the second NIC.

      You must completely remove the phc2sysOpts field from the second PtpConfig CR to disable the phc2sys service on the second NIC.

  2. Create the dual-NIC PtpConfig CRs by running the following commands:

    1. Create the CR that configures PTP for the first NIC:

      $ oc create -f boundary-clock-ptp-config-nic1.yaml
    2. Create the CR that configures PTP for the second NIC:

      $ oc create -f boundary-clock-ptp-config-nic2.yaml
Verification
  • Check that the PTP Operator has applied the PtpConfig CRs for both NICs. Examine the logs for the linuxptp daemon corresponding to the node that has the dual-NIC hardware installed. For example, run the following command:

    $ oc logs linuxptp-daemon-cvgr6 -n openshift-ptp -c linuxptp-daemon-container
    Example output
    ptp4l[80828.335]: [ptp4l.1.config] master offset          5 s2 freq   -5727 path delay       519
    ptp4l[80828.343]: [ptp4l.0.config] master offset         -5 s2 freq  -10607 path delay       533
    phc2sys[80828.390]: [ptp4l.0.config] CLOCK_REALTIME phc offset         1 s2 freq  -87239 delay    539

Configuring linuxptp as a highly available system clock for dual-NIC Intel E810 PTP boundary clocks

You can configure the linuxptp services ptp4l and phc2sys as a highly available (HA) system clock for dual PTP boundary clocks (T-BC).

The highly available system clock uses multiple time sources from dual-NIC Intel E810 Salem channel hardware configured as two boundary clocks. Two boundary clocks instances participate in the HA setup, each with its own configuration profile. You connect each NIC to the same upstream leader clock with separate ptp4l instances for each NIC feeding the downstream clocks.

Create two PtpConfig custom resource (CR) objects that configure the NICs as T-BC and a third PtpConfig CR that configures high availability between the two NICs.

You set phc2SysOpts options once in the PtpConfig CR that configures HA. Set the phc2sysOpts field to an empty string in the PtpConfig CRs that configure the two NICs. This prevents individual phc2sys processes from being set up for the two profiles.

The third PtpConfig CR configures a highly available system clock service. The CR sets the ptp4lOpts field to an empty string to prevent the ptp4l process from running. The CR adds profiles for the ptp4l configurations under the spec.profile.ptpSettings.haProfiles key and passes the kernel socket path of those profiles to the phc2sys service. When a ptp4l failure occurs, the phc2sys service switches to the backup ptp4l configuration. When the primary profile becomes active again, the phc2sys service reverts to the original state.

Ensure that you set spec.recommend.priority to the same value for all three PtpConfig CRs that you use to configure HA.

Prerequisites
  • Install the OpenShift CLI (oc).

  • Log in as a user with cluster-admin privileges.

  • Install the PTP Operator.

  • Configure a cluster node with Intel E810 Salem channel dual-NIC.

Procedure
  1. Create two separate PtpConfig CRs, one for each NIC, using the CRs in "Configuring linuxptp services as boundary clocks for dual-NIC hardware" as a reference for each CR.

    1. Create the ha-ptp-config-nic1.yaml file, specifying an empty string for the phc2sysOpts field. For example:

      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: ha-ptp-config-nic1
        namespace: openshift-ptp
      spec:
        profile:
        - name: "ha-ptp-config-profile1"
          ptp4lOpts: "-2 --summary_interval -4"
          ptp4lConf: | (1)
            [ens5f1]
            masterOnly 1
            [ens5f0]
            masterOnly 0
          #...
          phc2sysOpts: "" (2)
      1 Specify the required interfaces to start ptp4l as a boundary clock. For example, ens5f0 synchronizes from a grandmaster clock and ens5f1 synchronizes connected devices.
      2 Set phc2sysOpts with an empty string. These values are populated from the spec.profile.ptpSettings.haProfiles field of the PtpConfig CR that configures high availability.
    2. Apply the PtpConfig CR for NIC 1 by running the following command:

      $ oc create -f ha-ptp-config-nic1.yaml
    3. Create the ha-ptp-config-nic2.yaml file, specifying an empty string for the phc2sysOpts field. For example:

      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: ha-ptp-config-nic2
        namespace: openshift-ptp
      spec:
        profile:
        - name: "ha-ptp-config-profile2"
          ptp4lOpts: "-2 --summary_interval -4"
          ptp4lConf: |
            [ens7f1]
            masterOnly 1
            [ens7f0]
            masterOnly 0
          #...
          phc2sysOpts: ""
    4. Apply the PtpConfig CR for NIC 2 by running the following command:

      $ oc create -f ha-ptp-config-nic2.yaml
  2. Create the PtpConfig CR that configures the HA system clock. For example:

    1. Create the ptp-config-for-ha.yaml file. Set haProfiles to match the metadata.name fields that are set in the PtpConfig CRs that configure the two NICs. For example: haProfiles: ha-ptp-config-nic1,ha-ptp-config-nic2

      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: boundary-ha
        namespace: openshift-ptp
        annotations: {}
      spec:
        profile:
          - name: "boundary-ha"
            ptp4lOpts: "" (1)
            phc2sysOpts: "-a -r -n 24"
            ptpSchedulingPolicy: SCHED_FIFO
            ptpSchedulingPriority: 10
            ptpSettings:
              logReduce: "true"
              haProfiles: "$profile1,$profile2"
        recommend:
          - profile: "boundary-ha"
            priority: 4
            match:
              - nodeLabel: "node-role.kubernetes.io/$mcp"
      1 Set the ptp4lOpts field to an empty string. If it is not empty, the p4ptl process starts with a critical error.

    Do not apply the high availability PtpConfig CR before the PtpConfig CRs that configure the individual NICs.

    1. Apply the HA PtpConfig CR by running the following command:

      $ oc create -f ptp-config-for-ha.yaml
Verification
  • Verify that the PTP Operator has applied the PtpConfig CRs correctly. Perform the following steps:

    1. Get the list of pods in the openshift-ptp namespace by running the following command:

      $ oc get pods -n openshift-ptp -o wide
      Example output
      NAME                            READY   STATUS    RESTARTS   AGE   IP               NODE
      linuxptp-daemon-4xkrb           1/1     Running   0          43m   10.1.196.24      compute-0.example.com
      ptp-operator-657bbq64c8-2f8sj   1/1     Running   0          43m   10.129.0.61      control-plane-1.example.com

      There should be only one linuxptp-daemon pod.

    2. Check that the profile is correct by running the following command. Examine the logs of the linuxptp daemon that corresponds to the node you specified in the PtpConfig profile.

      $ oc logs linuxptp-daemon-4xkrb -n openshift-ptp -c linuxptp-daemon-container
      Example output
      I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
      I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
      I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
      I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: ha-ptp-config-profile1
      I1115 09:41:17.117616 4143292 daemon.go:102] Interface:
      I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2
      I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
      I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

Configuring linuxptp services as an ordinary clock

You can configure linuxptp services (ptp4l, phc2sys) as ordinary clock by creating a PtpConfig custom resource (CR) object.

Use the following example PtpConfig CR as the basis to configure linuxptp services as an ordinary clock for your particular hardware and environment. This example CR does not configure PTP fast events. To configure PTP fast events, set appropriate values for ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is required only when events are enabled. See "Configuring the PTP fast event notifications publisher" for more information.

Prerequisites
  • Install the OpenShift CLI (oc).

  • Log in as a user with cluster-admin privileges.

  • Install the PTP Operator.

Procedure
  1. Create the following PtpConfig CR, and then save the YAML in the ordinary-clock-ptp-config.yaml file.

    Example PTP ordinary clock configuration
    apiVersion: ptp.openshift.io/v1
    kind: PtpConfig
    metadata:
      name: ordinary-clock
      namespace: openshift-ptp
      annotations: {}
    spec:
      profile:
        - name: ordinary-clock
          # The interface name is hardware-specific
          interface: $interface
          ptp4lOpts: "-2 -s"
          phc2sysOpts: "-a -r -n 24"
          ptpSchedulingPolicy: SCHED_FIFO
          ptpSchedulingPriority: 10
          ptpSettings:
            logReduce: "true"
          ptp4lConf: |
            [global]
            #
            # Default Data Set
            #
            twoStepFlag 1
            slaveOnly 1
            priority1 128
            priority2 128
            domainNumber 24
            #utc_offset 37
            clockClass 255
            clockAccuracy 0xFE
            offsetScaledLogVariance 0xFFFF
            free_running 0
            freq_est_interval 1
            dscp_event 0
            dscp_general 0
            dataset_comparison G.8275.x
            G.8275.defaultDS.localPriority 128
            #
            # Port Data Set
            #
            logAnnounceInterval -3
            logSyncInterval -4
            logMinDelayReqInterval -4
            logMinPdelayReqInterval -4
            announceReceiptTimeout 3
            syncReceiptTimeout 0
            delayAsymmetry 0
            fault_reset_interval -4
            neighborPropDelayThresh 20000000
            masterOnly 0
            G.8275.portDS.localPriority 128
            #
            # Run time options
            #
            assume_two_step 0
            logging_level 6
            path_trace_enabled 0
            follow_up_info 0
            hybrid_e2e 0
            inhibit_multicast_service 0
            net_sync_monitor 0
            tc_spanning_tree 0
            tx_timestamp_timeout 50
            unicast_listen 0
            unicast_master_table 0
            unicast_req_duration 3600
            use_syslog 1
            verbose 0
            summary_interval 0
            kernel_leap 1
            check_fup_sync 0
            clock_class_threshold 7
            #
            # Servo Options
            #
            pi_proportional_const 0.0
            pi_integral_const 0.0
            pi_proportional_scale 0.0
            pi_proportional_exponent -0.3
            pi_proportional_norm_max 0.7
            pi_integral_scale 0.0
            pi_integral_exponent 0.4
            pi_integral_norm_max 0.3
            step_threshold 2.0
            first_step_threshold 0.00002
            max_frequency 900000000
            clock_servo pi
            sanity_freq_limit 200000000
            ntpshm_segment 0
            #
            # Transport options
            #
            transportSpecific 0x0
            ptp_dst_mac 01:1B:19:00:00:00
            p2p_dst_mac 01:80:C2:00:00:0E
            udp_ttl 1
            udp6_scope 0x0E
            uds_address /var/run/ptp4l
            #
            # Default interface options
            #
            clock_type OC
            network_transport L2
            delay_mechanism E2E
            time_stamping hardware
            tsproc_mode filter
            delay_filter moving_median
            delay_filter_length 10
            egressLatency 0
            ingressLatency 0
            boundary_clock_jbod 0
            #
            # Clock description
            #
            productDescription ;;
            revisionData ;;
            manufacturerIdentity 00:00:00
            userDescription ;
            timeSource 0xA0
      recommend:
        - profile: ordinary-clock
          priority: 4
          match:
            - nodeLabel: "node-role.kubernetes.io/$mcp"
    Table 9. PTP ordinary clock CR configuration options
    CR field Description

    name

    The name of the PtpConfig CR.

    profile

    Specify an array of one or more profile objects. Each profile must be uniquely named.

    interface

    Specify the network interface to be used by the ptp4l service, for example ens787f1.

    ptp4lOpts

    Specify system config options for the ptp4l service, for example -2 to select the IEEE 802.3 network transport. The options should not include the network interface name -i <interface> and service config file -f /etc/ptp4l.conf because the network interface name and the service config file are automatically appended. Append --summary_interval -4 to use PTP fast events with this interface.

    phc2sysOpts

    Specify system config options for the phc2sys service. If this field is empty, the PTP Operator does not start the phc2sys service. For Intel Columbiaville 800 Series NICs, set phc2sysOpts options to -a -r -m -n 24 -N 8 -R 16. -m prints messages to stdout. The linuxptp-daemon DaemonSet parses the logs and generates Prometheus metrics.

    ptp4lConf

    Specify a string that contains the configuration to replace the default /etc/ptp4l.conf file. To use the default configuration, leave the field empty.

    tx_timestamp_timeout

    For Intel Columbiaville 800 Series NICs, set tx_timestamp_timeout to 50.

    boundary_clock_jbod

    For Intel Columbiaville 800 Series NICs, set boundary_clock_jbod to 0.

    ptpSchedulingPolicy

    Scheduling policy for ptp4l and phc2sys processes. Default value is SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO scheduling.

    ptpSchedulingPriority

    Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys processes when ptpSchedulingPolicy is set to SCHED_FIFO. The ptpSchedulingPriority field is not used when ptpSchedulingPolicy is set to SCHED_OTHER.

    ptpClockThreshold

    Optional. If ptpClockThreshold is not present, default values are used for the ptpClockThreshold fields. ptpClockThreshold configures how long after the PTP master clock is disconnected before PTP events are triggered. holdOverTimeout is the time value in seconds before the PTP clock event state changes to FREERUN when the PTP master clock is disconnected. The maxOffsetThreshold and minOffsetThreshold settings configure offset values in nanoseconds that compare against the values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys offset value is outside this range, the PTP clock state is set to FREERUN. When the offset value is within this range, the PTP clock state is set to LOCKED.

    recommend

    Specify an array of one or more recommend objects that define rules on how the profile should be applied to nodes.

    .recommend.profile

    Specify the .recommend.profile object name defined in the profile section.

    .recommend.priority

    Set .recommend.priority to 0 for ordinary clock.

    .recommend.match

    Specify .recommend.match rules with nodeLabel or nodeName values.

    .recommend.match.nodeLabel

    Set nodeLabel with the key of the node.Labels field from the node object by using the oc get nodes --show-labels command. For example, node-role.kubernetes.io/worker.

    .recommend.match.nodeName

    Set nodeName with the value of the node.Name field from the node object by using the oc get nodes command. For example, compute-1.example.com.

  2. Create the PtpConfig CR by running the following command:

    $ oc create -f ordinary-clock-ptp-config.yaml
Verification
  1. Check that the PtpConfig profile is applied to the node.

    1. Get the list of pods in the openshift-ptp namespace by running the following command:

      $ oc get pods -n openshift-ptp -o wide
      Example output
      NAME                            READY   STATUS    RESTARTS   AGE   IP               NODE
      linuxptp-daemon-4xkbb           1/1     Running   0          43m   10.1.196.24      compute-0.example.com
      linuxptp-daemon-tdspf           1/1     Running   0          43m   10.1.196.25      compute-1.example.com
      ptp-operator-657bbb64c8-2f8sj   1/1     Running   0          43m   10.129.0.61      control-plane-1.example.com
    2. Check that the profile is correct. Examine the logs of the linuxptp daemon that corresponds to the node you specified in the PtpConfig profile. Run the following command:

      $ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container
      Example output
      I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
      I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
      I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
      I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
      I1115 09:41:17.117616 4143292 daemon.go:102] Interface: ens787f1
      I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2 -s
      I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
      I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

Intel Columbiaville E800 series NIC as PTP ordinary clock reference

The following table describes the changes that you must make to the reference PTP configuration to use Intel Columbiaville E800 series NICs as ordinary clocks. Make the changes in a PtpConfig custom resource (CR) that you apply to the cluster.

Table 10. Recommended PTP settings for Intel Columbiaville NIC
PTP configuration Recommended setting

phc2sysOpts

-a -r -m -n 24 -N 8 -R 16

tx_timestamp_timeout

50

boundary_clock_jbod

0

For phc2sysOpts, -m prints messages to stdout. The linuxptp-daemon DaemonSet parses the logs and generates Prometheus metrics.

Additional resources

Configuring FIFO priority scheduling for PTP hardware

In telco or other deployment types that require low latency performance, PTP daemon threads run in a constrained CPU footprint alongside the rest of the infrastructure components. By default, PTP threads run with the SCHED_OTHER policy. Under high load, these threads might not get the scheduling latency they require for error-free operation.

To mitigate against potential scheduling latency errors, you can configure the PTP Operator linuxptp services to allow threads to run with a SCHED_FIFO policy. If SCHED_FIFO is set for a PtpConfig CR, then ptp4l and phc2sys will run in the parent container under chrt with a priority set by the ptpSchedulingPriority field of the PtpConfig CR.

Setting ptpSchedulingPolicy is optional, and is only required if you are experiencing latency errors.

Procedure
  1. Edit the PtpConfig CR profile:

    $ oc edit PtpConfig -n openshift-ptp
  2. Change the ptpSchedulingPolicy and ptpSchedulingPriority fields:

    apiVersion: ptp.openshift.io/v1
    kind: PtpConfig
    metadata:
      name: <ptp_config_name>
      namespace: openshift-ptp
    ...
    spec:
      profile:
      - name: "profile1"
    ...
        ptpSchedulingPolicy: SCHED_FIFO (1)
        ptpSchedulingPriority: 10 (2)
    1 Scheduling policy for ptp4l and phc2sys processes. Use SCHED_FIFO on systems that support FIFO scheduling.
    2 Required. Sets the integer value 1-65 used to configure FIFO priority for ptp4l and phc2sys processes.
  3. Save and exit to apply the changes to the PtpConfig CR.

Verification
  1. Get the name of the linuxptp-daemon pod and corresponding node where the PtpConfig CR has been applied:

    $ oc get pods -n openshift-ptp -o wide
    Example output
    NAME                            READY   STATUS    RESTARTS   AGE     IP            NODE
    linuxptp-daemon-gmv2n           3/3     Running   0          1d17h   10.1.196.24   compute-0.example.com
    linuxptp-daemon-lgm55           3/3     Running   0          1d17h   10.1.196.25   compute-1.example.com
    ptp-operator-3r4dcvf7f4-zndk7   1/1     Running   0          1d7h    10.129.0.61   control-plane-1.example.com
  2. Check that the ptp4l process is running with the updated chrt FIFO priority:

    $ oc -n openshift-ptp logs linuxptp-daemon-lgm55 -c linuxptp-daemon-container|grep chrt
    Example output
    I1216 19:24:57.091872 1600715 daemon.go:285] /bin/chrt -f 65 /usr/sbin/ptp4l -f /var/run/ptp4l.0.config -2  --summary_interval -4 -m

Configuring log filtering for linuxptp services

The linuxptp daemon generates logs that you can use for debugging purposes. In telco or other deployment types that feature a limited storage capacity, these logs can add to the storage demand.

To reduce the number log messages, you can configure the PtpConfig custom resource (CR) to exclude log messages that report the master offset value. The master offset log message reports the difference between the current node’s clock and the master clock in nanoseconds.

Prerequisites
  • Install the OpenShift CLI (oc).

  • Log in as a user with cluster-admin privileges.

  • Install the PTP Operator.

Procedure
  1. Edit the PtpConfig CR:

    $ oc edit PtpConfig -n openshift-ptp
  2. In spec.profile, add the ptpSettings.logReduce specification and set the value to true:

    apiVersion: ptp.openshift.io/v1
    kind: PtpConfig
    metadata:
      name: <ptp_config_name>
      namespace: openshift-ptp
    ...
    spec:
      profile:
      - name: "profile1"
    ...
        ptpSettings:
          logReduce: "true"

    For debugging purposes, you can revert this specification to False to include the master offset messages.

  3. Save and exit to apply the changes to the PtpConfig CR.

Verification
  1. Get the name of the linuxptp-daemon pod and corresponding node where the PtpConfig CR has been applied:

    $ oc get pods -n openshift-ptp -o wide
    Example output
    NAME                            READY   STATUS    RESTARTS   AGE     IP            NODE
    linuxptp-daemon-gmv2n           3/3     Running   0          1d17h   10.1.196.24   compute-0.example.com
    linuxptp-daemon-lgm55           3/3     Running   0          1d17h   10.1.196.25   compute-1.example.com
    ptp-operator-3r4dcvf7f4-zndk7   1/1     Running   0          1d7h    10.129.0.61   control-plane-1.example.com
  2. Verify that master offset messages are excluded from the logs by running the following command:

    $ oc -n openshift-ptp logs <linux_daemon_container> -c linuxptp-daemon-container | grep "master offset" (1)
    1 <linux_daemon_container> is the name of the linuxptp-daemon pod, for example linuxptp-daemon-gmv2n.

    When you configure the logReduce specification, this command does not report any instances of master offset in the logs of the linuxptp daemon.

Troubleshooting common PTP Operator issues

Troubleshoot common problems with the PTP Operator by performing the following steps.

Prerequisites
  • Install the OpenShift Container Platform CLI (oc).

  • Log in as a user with cluster-admin privileges.

  • Install the PTP Operator on a bare-metal cluster with hosts that support PTP.

Procedure
  1. Check the Operator and operands are successfully deployed in the cluster for the configured nodes.

    $ oc get pods -n openshift-ptp -o wide
    Example output
    NAME                            READY   STATUS    RESTARTS   AGE     IP            NODE
    linuxptp-daemon-lmvgn           3/3     Running   0          4d17h   10.1.196.24   compute-0.example.com
    linuxptp-daemon-qhfg7           3/3     Running   0          4d17h   10.1.196.25   compute-1.example.com
    ptp-operator-6b8dcbf7f4-zndk7   1/1     Running   0          5d7h    10.129.0.61   control-plane-1.example.com

    When the PTP fast event bus is enabled, the number of ready linuxptp-daemon pods is 3/3. If the PTP fast event bus is not enabled, 2/2 is displayed.

  2. Check that supported hardware is found in the cluster.

    $ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io
    Example output
    NAME                                  AGE
    control-plane-0.example.com           10d
    control-plane-1.example.com           10d
    compute-0.example.com                 10d
    compute-1.example.com                 10d
    compute-2.example.com                 10d
  3. Check the available PTP network interfaces for a node:

    $ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io <node_name> -o yaml

    where:

    <node_name>

    Specifies the node you want to query, for example, compute-0.example.com.

    Example output
    apiVersion: ptp.openshift.io/v1
    kind: NodePtpDevice
    metadata:
      creationTimestamp: "2021-09-14T16:52:33Z"
      generation: 1
      name: compute-0.example.com
      namespace: openshift-ptp
      resourceVersion: "177400"
      uid: 30413db0-4d8d-46da-9bef-737bacd548fd
    spec: {}
    status:
      devices:
      - name: eno1
      - name: eno2
      - name: eno3
      - name: eno4
      - name: enp5s0f0
      - name: enp5s0f1
  4. Check that the PTP interface is successfully synchronized to the primary clock by accessing the linuxptp-daemon pod for the corresponding node.

    1. Get the name of the linuxptp-daemon pod and corresponding node you want to troubleshoot by running the following command:

      $ oc get pods -n openshift-ptp -o wide
      Example output
      NAME                            READY   STATUS    RESTARTS   AGE     IP            NODE
      linuxptp-daemon-lmvgn           3/3     Running   0          4d17h   10.1.196.24   compute-0.example.com
      linuxptp-daemon-qhfg7           3/3     Running   0          4d17h   10.1.196.25   compute-1.example.com
      ptp-operator-6b8dcbf7f4-zndk7   1/1     Running   0          5d7h    10.129.0.61   control-plane-1.example.com
    2. Remote shell into the required linuxptp-daemon container:

      $ oc rsh -n openshift-ptp -c linuxptp-daemon-container <linux_daemon_container>

      where:

      <linux_daemon_container>

      is the container you want to diagnose, for example linuxptp-daemon-lmvgn.

    3. In the remote shell connection to the linuxptp-daemon container, use the PTP Management Client (pmc) tool to diagnose the network interface. Run the following pmc command to check the sync status of the PTP device, for example ptp4l.

      # pmc -u -f /var/run/ptp4l.0.config -b 0 'GET PORT_DATA_SET'
      Example output when the node is successfully synced to the primary clock
      sending: GET PORT_DATA_SET
          40a6b7.fffe.166ef0-1 seq 0 RESPONSE MANAGEMENT PORT_DATA_SET
              portIdentity            40a6b7.fffe.166ef0-1
              portState               SLAVE
              logMinDelayReqInterval  -4
              peerMeanPathDelay       0
              logAnnounceInterval     -3
              announceReceiptTimeout  3
              logSyncInterval         -4
              delayMechanism          1
              logMinPdelayReqInterval -4
              versionNumber           2
  5. For GNSS-sourced grandmaster clocks, verify that the in-tree NIC ice driver is correct by running the following command, for example:

    $ oc rsh -n openshift-ptp -c linuxptp-daemon-container linuxptp-daemon-74m2g ethtool -i ens7f0
    Example output
    driver: ice
    version: 5.14.0-356.bz2232515.el9.x86_64
    firmware-version: 4.20 0x8001778b 1.3346.0
  6. For GNSS-sourced grandmaster clocks, verify that the linuxptp-daemon container is receiving signal from the GNSS antenna. If the container is not receiving the GNSS signal, the /dev/gnss0 file is not populated. To verify, run the following command:

    $ oc rsh -n openshift-ptp -c linuxptp-daemon-container linuxptp-daemon-jnz6r cat /dev/gnss0
    Example output
    $GNRMC,125223.00,A,4233.24463,N,07126.64561,W,0.000,,300823,,,A,V*0A
    $GNVTG,,T,,M,0.000,N,0.000,K,A*3D
    $GNGGA,125223.00,4233.24463,N,07126.64561,W,1,12,99.99,98.6,M,-33.1,M,,*7E
    $GNGSA,A,3,25,17,19,11,12,06,05,04,09,20,,,99.99,99.99,99.99,1*37
    $GPGSV,3,1,10,04,12,039,41,05,31,222,46,06,50,064,48,09,28,064,42,1*62

Getting the DPLL firmware version for the CGU in an Intel 800 series NIC

You can get the digital phase-locked loop (DPLL) firmware version for the Clock Generation Unit (CGU) in an Intel 800 series NIC by opening a debug shell to the cluster node and querying the NIC hardware.

Prerequisites
  • You have installed the OpenShift CLI (oc).

  • You have logged in as a user with cluster-admin privileges.

  • You have installed an Intel 800 series NIC in the cluster host.

  • You have installed the PTP Operator on a bare-metal cluster with hosts that support PTP.

Procedure
  1. Start a debug pod by running the following command:

    $ oc debug node/<node_name>

    where:

    <node_name>

    Is the node where you have installed the Intel 800 series NIC.

  2. Check the CGU firmware version in the NIC by using the devlink tool and the bus and device name where the NIC is installed. For example, run the following command:

    sh-4.4# devlink dev info <bus_name>/<device_name> | grep cgu

    where:

    <bus_name>

    Is the bus where the NIC is installed. For example, pci.

    <device_name>

    Is the NIC device name. For example, 0000:51:00.0.

    Example output
    cgu.id 36 (1)
    fw.cgu 8032.16973825.6021 (2)
    
    1 CGU hardware revision number
    2 The DPLL firmware version running in the CGU, where the DPLL firmware version is 6201, and the DPLL model is 8032. The string 16973825 is a shorthand representation of the binary version of the DPLL firmware version (1.3.0.1).

    The firmware version has a leading nibble and 3 octets for each part of the version number. The number 16973825 in binary is 0001 0000 0011 0000 0000 0000 0001. Use the binary value to decode the firmware version. For example:

    Table 11. DPLL firmware version
    Binary part Decimal value

    0001

    1

    0000 0011

    3

    0000 0000

    0

    0000 0001

    1

Collecting PTP Operator data

You can use the oc adm must-gather command to collect information about your cluster, including features and objects associated with PTP Operator.

Prerequisites
  • You have access to the cluster as a user with the cluster-admin role.

  • You have installed the OpenShift CLI (oc).

  • You have installed the PTP Operator.

Procedure
  • To collect PTP Operator data with must-gather, you must specify the PTP Operator must-gather image.

    $ oc adm must-gather --image=registry.redhat.io/openshift4/ptp-must-gather-rhel8:v4.16