×

In OpenShift Container Platform version 4.12, you can install a cluster into a shared Virtual Private Cloud (VPC) on Google Cloud Platform (GCP). In this installation method, the cluster is configured to use a VPC from a different GCP project. A shared VPC enables an organization to connect resources from multiple projects to a common VPC network. You can communicate within the organization securely and efficiently by using internal IP addresses from that network. For more information about shared VPC, see Shared VPC overview in the GCP documentation.

The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.

Installing a cluster on GCP into a shared VPC is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Prerequisites

Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.12, you require access to the internet to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager Hybrid Cloud Console to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.

  • Access Quay.io to obtain the packages that are required to install your cluster.

  • Obtain the packages that are required to perform cluster updates.

If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.

Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure
  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
    1 Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.

    If you plan to install an OpenShift Container Platform cluster that uses FIPS validated or Modules In Process cryptographic libraries on the x86_64, ppc64le, and s390x architectures. do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"
      Example output
      Agent pid 31874

      If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> (1)
    1 Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519
    Example output
    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Next steps
  • When you install OpenShift Container Platform, provide the SSH public key to the installation program.

Obtaining the installation program

Before you install OpenShift Container Platform, download the installation file on the host you are using for installation.

Prerequisites
  • You have a computer that runs Linux or macOS, with 500 MB of local disk space.

Procedure
  1. Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.

  2. Select your infrastructure provider.

  3. Navigate to the page for your installation type, download the installation program that corresponds with your host operating system and architecture, and place the file in the directory where you will store the installation configuration files.

    The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.

    Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.

  4. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -xvf openshift-install-linux.tar.gz
  5. Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.

Creating the installation files for GCP

To install OpenShift Container Platform on Google Cloud Platform (GCP) into a shared VPC, you must generate the install-config.yaml file and modify it so that the cluster uses the correct VPC networks, DNS zones, and project names.

Manually creating the installation configuration file

You must manually create your installation configuration file when installing OpenShift Container Platform on GCP into a shared VPC using installer-provisioned infrastructure.

Prerequisites
  • You have an SSH public key on your local machine to provide to the installation program. The key will be used for SSH authentication onto your cluster nodes for debugging and disaster recovery.

  • You have obtained the OpenShift Container Platform installation program and the pull secret for your cluster.

Procedure
  1. Create an installation directory to store your required installation assets in:

    $ mkdir <installation_directory>

    You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.

  2. Customize the sample install-config.yaml file template that is provided and save it in the <installation_directory>.

    You must name this configuration file install-config.yaml.

  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.

Sample customized install-config.yaml file for shared VPC installation

There are several configuration parameters which are required to install OpenShift Container Platform on GCP using a shared VPC. The following is a sample install-config.yaml file which demonstrates these fields.

This sample YAML file is provided for reference only. You must modify this file with the correct values for your environment and cluster.

apiVersion: v1
baseDomain: example.com
credentialsMode: Passthrough (1)
metadata:
  name: cluster_name
platform:
  gcp:
    computeSubnet: shared-vpc-subnet-1 (2)
    controlPlaneSubnet: shared-vpc-subnet-2 (3)
    createFirewallRules: Disabled (4)
    network: shared-vpc (5)
    networkProjectID: host-project-name (6)
    publicDNSZone:
      id: public-dns-zone (7)
      project: host-project-name (8)
    projectID: service-project-name (9)
    region: us-east1
    defaultMachinePlatform:
      tags: (10)
      - global-tag1
controlPlane:
  name: master
  platform:
    gcp:
      tags: (10)
      - control-plane-tag1
      type: n2-standard-4
      zones:
      - us-central1-a
      - us-central1-c
  replicas: 3
compute:
- name: worker
  platform:
    gcp:
      tags: (10)
      - compute-tag1
      type: n2-standard-4
      zones:
      - us-central1-a
      - us-central1-c
  replicas: 3
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA... (11)
1 credentialsMode must be set to Passthrough to allow the cluster to use the provided GCP service account after cluster creation. See the "Prerequisites" section for the required GCP permissions that your service account must have.
2 The name of the subnet in the shared VPC for compute machines to use.
3 The name of the subnet in the shared VPC for control plane machines to use.
4 Optional. If you set createFirewallRules to Disabled, you can create and manage firewall rules manually through the use of network tags. By default, the cluster will automatically create and manage the firewall rules that are required for cluster communication. Your service account must have roles/compute.networkAdmin and roles/compute.securityAdmin privileges in the host project to perform these tasks automatically. If your service account does not have the roles/dns.admin privilege in the host project, it must have the dns.networks.bindPrivateDNSZone permission.
5 The name of the shared VPC.
6 The name of the host project where the shared VPC exists.
7 Optional. The name of a public DNS zone in the host project. If you set this value, your service account must have the roles/dns.admin privilege in the host project. The public DNS zone domain must match the baseDomain parameter. If you do not set this value, the installation program will use the public DNS zone in the service project.
8 Optional. The name of the host project which contains the public DNS zone. This value is required if you specify a public DNS zone that exists in another project.
9 The name of the GCP project where you want to install the cluster.
10 Optional. If you want to manually create and manage your GCP firewall rules, you can set platform.gcp.createFirewallRules to Disabled and then specify one or more network tags. You can set tags on the compute machines, the control plane machines, or all machines.
11 You can optionally provide the sshKey value that you use to access the machines in your cluster.

Installation configuration parameters

Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.

After installation, you cannot modify these parameters in the install-config.yaml file.

Required configuration parameters

Required installation configuration parameters are described in the following table:

Table 1. Required parameters
Parameter Description Values

apiVersion

The API version for the install-config.yaml content. The current version is v1. The installation program may also support older API versions.

String

baseDomain

The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.

A fully-qualified domain or subdomain name, such as example.com.

metadata

Kubernetes resource ObjectMeta, from which only the name parameter is consumed.

Object

metadata.name

The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.

String of lowercase letters, hyphens (-), and periods (.), such as dev.

platform

The configuration for the specific platform upon which to perform the installation: alibabacloud, aws, baremetal, azure, gcp, ibmcloud, nutanix, openstack, ovirt, vsphere, or {}. For additional information about platform.<platform> parameters, consult the table for your specific platform that follows.

Object

pullSecret

Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.

{
   "auths":{
      "cloud.openshift.com":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      },
      "quay.io":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      }
   }
}

Network configuration parameters

You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.

Only IPv4 addresses are supported.

Globalnet is not supported with Red Hat OpenShift Data Foundation disaster recovery solutions. For regional disaster recovery scenarios, ensure that you use a nonoverlapping range of private IP addresses for the cluster and service networks in each cluster.

Table 2. Network parameters
Parameter Description Values

networking

The configuration for the cluster network.

Object

You cannot modify parameters specified by the networking object after installation.

networking.networkType

The Red Hat OpenShift Networking network plugin to install.

Either OpenShiftSDN or OVNKubernetes. OpenShiftSDN is a CNI plugin for all-Linux networks. OVNKubernetes is a CNI plugin for Linux networks and hybrid networks that contain both Linux and Windows servers. The default value is OVNKubernetes.

networking.clusterNetwork

The IP address blocks for pods.

The default value is 10.128.0.0/14 with a host prefix of /23.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23

networking.clusterNetwork.cidr

Required if you use networking.clusterNetwork. An IP address block.

An IPv4 network.

An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.

networking.clusterNetwork.hostPrefix

The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.

A subnet prefix.

The default value is 23.

networking.serviceNetwork

The IP address block for services. The default value is 172.30.0.0/16.

The OpenShift SDN and OVN-Kubernetes network plugins support only a single IP address block for the service network.

An array with an IP address block in CIDR format. For example:

networking:
  serviceNetwork:
   - 172.30.0.0/16

networking.machineNetwork

The IP address blocks for machines.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  machineNetwork:
  - cidr: 10.0.0.0/16

networking.machineNetwork.cidr

Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.

An IP network block in CIDR notation.

For example, 10.0.0.0/16.

Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.

Optional configuration parameters

Optional installation configuration parameters are described in the following table:

Table 3. Optional parameters
Parameter Description Values

additionalTrustBundle

A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.

String

capabilities

Controls the installation of optional core cluster components. You can reduce the footprint of your OpenShift Container Platform cluster by disabling optional components. For more information, see the "Cluster capabilities" page in Installing.

String array

capabilities.baselineCapabilitySet

Selects an initial set of optional capabilities to enable. Valid values are None, v4.11, v4.12 and vCurrent. The default value is vCurrent.

String

capabilities.additionalEnabledCapabilities

Extends the set of optional capabilities beyond what you specify in baselineCapabilitySet. You may specify multiple capabilities in this parameter.

String array

compute

The configuration for the machines that comprise the compute nodes.

Array of MachinePool objects.

compute.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

compute.hyperthreading

Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

compute.name

Required if you use compute. The name of the machine pool.

worker

compute.platform

Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, nutanix, openstack, ovirt, vsphere, or {}

compute.replicas

The number of compute machines, which are also known as worker machines, to provision.

A positive integer greater than or equal to 2. The default value is 3.

featureSet

Enables the cluster for a feature set. A feature set is a collection of OpenShift Container Platform features that are not enabled by default. For more information about enabling a feature set during installation, see "Enabling features using feature gates".

String. The name of the feature set to enable, such as TechPreviewNoUpgrade.

controlPlane

The configuration for the machines that comprise the control plane.

Array of MachinePool objects.

controlPlane.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

controlPlane.hyperthreading

Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

controlPlane.name

Required if you use controlPlane. The name of the machine pool.

master

controlPlane.platform

Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, nutanix, openstack, ovirt, vsphere, or {}

controlPlane.replicas

The number of control plane machines to provision.

The only supported value is 3, which is the default value.

credentialsMode

The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported. If you are installing on GCP into a shared virtual private cloud (VPC), credentialsMode must be set to Passthrough.

Not all CCO modes are supported for all cloud providers. For more information about CCO modes, see the Cloud Credential Operator entry in the Cluster Operators reference content.

If your AWS account has service control policies (SCP) enabled, you must configure the credentialsMode parameter to Mint, Passthrough or Manual.

Mint, Passthrough, Manual or an empty string ("").

fips

Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Installing the system in FIPS mode. The use of FIPS validated or Modules In Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64, ppc64le, and s390x architectures.

If you are using Azure File storage, you cannot enable FIPS mode.

false or true

imageContentSources

Sources and repositories for the release-image content.

Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.

imageContentSources.source

Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.

String

imageContentSources.mirrors

Specify one or more repositories that may also contain the same images.

Array of strings

publish

How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.

Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.

sshKey

The SSH key to authenticate access to your cluster machines.

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

For example, sshKey: ssh-ed25519 AAAA...

Additional Google Cloud Platform (GCP) configuration parameters

Additional GCP configuration parameters are described in the following table:

Table 4. Additional GCP parameters
Parameter Description Values

platform.gcp.network

The name of the existing Virtual Private Cloud (VPC) where you want to deploy your cluster. If you want to deploy your cluster into a shared VPC, you must set platform.gcp.networkProjectID with the name of the GCP project that contains the shared VPC.

String.

platform.gcp.networkProjectID

Optional. The name of the GCP project that contains the shared VPC where you want to deploy your cluster.

String.

platform.gcp.projectID

The name of the GCP project where the installation program installs the cluster.

String.

platform.gcp.region

The name of the GCP region that hosts your cluster.

Any valid region name, such as us-central1.

platform.gcp.controlPlaneSubnet

The name of the existing subnet where you want to deploy your control plane machines.

The subnet name.

platform.gcp.computeSubnet

The name of the existing subnet where you want to deploy your compute machines.

The subnet name.

platform.gcp.createFirewallRules

Optional. Set this value to Disabled if you want to create and manage your firewall rules using network tags. By default, the cluster will automatically create and manage the firewall rules that are required for cluster communication. Your service account must have roles/compute.networkAdmin and roles/compute.securityAdmin privileges in the host project to perform these tasks automatically. If your service account does not have the roles/dns.admin privilege in the host project, it must have the dns.networks.bindPrivateDNSZone permission.

Enabled or Disabled. The default value is Enabled.

platform.gcp.publicDNSZone.project

Optional. The name of the project that contains the public DNS zone. If you set this value, your service account must have the roles/dns.admin privilege in the specified project. If you do not set this value, it defaults to gcp.projectId.

The name of the project that contains the public DNS zone.

platform.gcp.publicDNSZone.id

Optional. The ID or name of an existing public DNS zone. The public DNS zone domain must match the baseDomain parameter. If you do not set this value, the installation program will use a public DNS zone in the service project.

The public DNS zone name.

platform.gcp.privateDNSZone.project

Optional. The name of the project that contains the private DNS zone. If you set this value, your service account must have the roles/dns.admin privilege in the host project. If you do not set this value, it defaults to gcp.projectId.

The name of the project that contains the private DNS zone.

platform.gcp.privateDNSZone.id

Optional. The ID or name of an existing private DNS zone. If you do not set this value, the installation program will create a private DNS zone in the service project.

The private DNS zone name.

platform.gcp.licenses

A list of license URLs that must be applied to the compute images.

The licenses parameter is a deprecated field and nested virtualization is enabled by default. It is not recommended to use this field.

Any license available with the license API, such as the license to enable nested virtualization. You cannot use this parameter with a mechanism that generates pre-built images. Using a license URL forces the installation program to copy the source image before use.

platform.gcp.defaultMachinePlatform.zones

The availability zones where the installation program creates machines.

A list of valid GCP availability zones, such as us-central1-a, in a YAML sequence.

platform.gcp.defaultMachinePlatform.osDisk.diskSizeGB

The size of the disk in gigabytes (GB).

Any size between 16 GB and 65536 GB.

platform.gcp.defaultMachinePlatform.osDisk.diskType

Either the default pd-ssd or the pd-standard disk type. The control plane nodes must be the pd-ssd disk type. Compute nodes can be either type.

platform.gcp.defaultMachinePlatform.osImage.project

Optional. By default, the installation program downloads and installs the RHCOS image that is used to boot control plane and compute machines. You can override the default behavior by specifying the location of a custom RHCOS image for the installation program to use for both types of machines.

String. The name of GCP project where the image is located.

platform.gcp.defaultMachinePlatform.osImage.name

The name of the custom RHCOS image for the installation program to use to boot control plane and compute machines. If you use platform.gcp.defaultMachinePlatform.osImage.project, this field is required.

String. The name of the RHCOS image.

platform.gcp.defaultMachinePlatform.tags

Optional. Additional network tags to add to the control plane and compute machines.

One or more strings, for example network-tag1.

platform.gcp.defaultMachinePlatform.type

The GCP machine type for control plane and compute machines.

The GCP machine type, for example n1-standard-4.

platform.gcp.defaultMachinePlatform.osDisk.encryptionKey.kmsKey.name

The name of the customer managed encryption key to be used for machine disk encryption.

The encryption key name.

platform.gcp.defaultMachinePlatform.osDisk.encryptionKey.kmsKey.keyRing

The name of the Key Management Service (KMS) key ring to which the KMS key belongs.

The KMS key ring name.

platform.gcp.defaultMachinePlatform.osDisk.encryptionKey.kmsKey.location

The GCP location in which the KMS key ring exists.

The GCP location.

platform.gcp.defaultMachinePlatform.osDisk.encryptionKey.kmsKey.projectID

The ID of the project in which the KMS key ring exists. This value defaults to the value of the platform.gcp.projectID parameter if it is not set.

The GCP project ID.

platform.gcp.defaultMachinePlatform.osDisk.encryptionKey.kmsKeyServiceAccount

The GCP service account used for the encryption request for control plane and compute machines. If absent, the Compute Engine default service account is used. For more information about GCP service accounts, see Google’s documentation on service accounts.

The GCP service account email, for example <service_account_name>@<project_id>.iam.gserviceaccount.com.

controlPlane.platform.gcp.osDisk.encryptionKey.kmsKey.name

The name of the customer managed encryption key to be used for control plane machine disk encryption.

The encryption key name.

controlPlane.platform.gcp.osDisk.encryptionKey.kmsKey.keyRing

For control plane machines, the name of the KMS key ring to which the KMS key belongs.

The KMS key ring name.

controlPlane.platform.gcp.osDisk.encryptionKey.kmsKey.location

For control plane machines, the GCP location in which the key ring exists. For more information about KMS locations, see Google’s documentation on Cloud KMS locations.

The GCP location for the key ring.

controlPlane.platform.gcp.osDisk.encryptionKey.kmsKey.projectID

For control plane machines, the ID of the project in which the KMS key ring exists. This value defaults to the VM project ID if not set.

The GCP project ID.

controlPlane.platform.gcp.osDisk.encryptionKey.kmsKeyServiceAccount

The GCP service account used for the encryption request for control plane machines. If absent, the Compute Engine default service account is used. For more information about GCP service accounts, see Google’s documentation on service accounts.

The GCP service account email, for example <service_account_name>@<project_id>.iam.gserviceaccount.com.

controlPlane.platform.gcp.osDisk.diskSizeGB

The size of the disk in gigabytes (GB). This value applies to control plane machines.

Any integer between 16 and 65536.

controlPlane.platform.gcp.osDisk.diskType

The GCP disk type for control plane machines.

Control plane machines must use the pd-ssd disk type, which is the default.

controlPlane.platform.gcp.osImage.project

Optional. By default, the installation program downloads and installs the Red Hat Enterprise Linux CoreOS (RHCOS) image that is used to boot control plane machines. You can override the default behavior by specifying the location of a custom RHCOS image for the installation program to use for control plane machines only.

String. The name of GCP project where the image is located.

controlPlane.platform.gcp.osImage.name

The name of the custom RHCOS image for the installation program to use to boot control plane machines. If you use controlPlane.platform.gcp.osImage.project, this field is required.

String. The name of the RHCOS image.

controlPlane.platform.gcp.tags

Optional. Additional network tags to add to the control plane machines. If set, this parameter overrides the platform.gcp.defaultMachinePlatform.tags parameter for control plane machines.

One or more strings, for example control-plane-tag1.

controlPlane.platform.gcp.type

The GCP machine type for control plane machines. If set, this parameter overrides the platform.gcp.defaultMachinePlatform.type parameter.

The GCP machine type, for example n1-standard-4.

controlPlane.platform.gcp.zones

The availability zones where the installation program creates control plane machines.

A list of valid GCP availability zones, such as us-central1-a, in a YAML sequence.

compute.platform.gcp.osDisk.encryptionKey.kmsKey.name

The name of the customer managed encryption key to be used for compute machine disk encryption.

The encryption key name.

compute.platform.gcp.osDisk.encryptionKey.kmsKey.keyRing

For compute machines, the name of the KMS key ring to which the KMS key belongs.

The KMS key ring name.

compute.platform.gcp.osDisk.encryptionKey.kmsKey.location

For compute machines, the GCP location in which the key ring exists. For more information about KMS locations, see Google’s documentation on Cloud KMS locations.

The GCP location for the key ring.

compute.platform.gcp.osDisk.encryptionKey.kmsKey.projectID

For compute machines, the ID of the project in which the KMS key ring exists. This value defaults to the VM project ID if not set.

The GCP project ID.

compute.platform.gcp.osDisk.encryptionKey.kmsKeyServiceAccount

The GCP service account used for the encryption request for compute machines. If this value is not set, the Compute Engine default service account is used. For more information about GCP service accounts, see Google’s documentation on service accounts.

The GCP service account email, for example <service_account_name>@<project_id>.iam.gserviceaccount.com.

compute.platform.gcp.osDisk.diskSizeGB

The size of the disk in gigabytes (GB). This value applies to compute machines.

Any integer between 16 and 65536.

compute.platform.gcp.osDisk.diskType

The GCP disk type for compute machines.

Either the default pd-ssd or the pd-standard disk type.

compute.platform.gcp.osImage.project

Optional. By default, the installation program downloads and installs the RHCOS image that is used to boot compute machines. You can override the default behavior by specifying the location of a custom RHCOS image for the installation program to use for compute machines only.

String. The name of GCP project where the image is located.

compute.platform.gcp.osImage.name

The name of the custom RHCOS image for the installation program to use to boot compute machines. If you use compute.platform.gcp.osImage.project, this field is required.

String. The name of the RHCOS image.

compute.platform.gcp.tags

Optional. Additional network tags to add to the compute machines. If set, this parameter overrides the platform.gcp.defaultMachinePlatform.tags parameter for compute machines.

One or more strings, for example compute-network-tag1.

compute.platform.gcp.type

The GCP machine type for compute machines. If set, this parameter overrides the platform.gcp.defaultMachinePlatform.type parameter.

The GCP machine type, for example n1-standard-4.

compute.platform.gcp.zones

The availability zones where the installation program creates compute machines.

A list of valid GCP availability zones, such as us-central1-a, in a YAML sequence.

Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites
  • You have an existing install-config.yaml file.

  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure
  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
      httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
      noProxy: example.com (3)
    additionalTrustBundle: | (4)
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> (5)
    1 A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2 A proxy URL to use for creating HTTPS connections outside the cluster.
    3 A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4 If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    5 Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.

    The installation program does not support the proxy readinessEndpoints field.

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Only the Proxy object named cluster is supported, and no additional proxies can be created.

Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites
  • Configure an account with the cloud platform that hosts your cluster.

  • Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.

  • Verify the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.

Procedure
  1. Remove any existing GCP credentials that do not use the service account key for the GCP account that you configured for your cluster and that are stored in the following locations:

    • The GOOGLE_CREDENTIALS, GOOGLE_CLOUD_KEYFILE_JSON, or GCLOUD_KEYFILE_JSON environment variables

    • The ~/.gcp/osServiceAccount.json file

    • The gcloud cli default credentials

  2. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ (1)
        --log-level=info (2)
    
    1 For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2 To view different installation details, specify warn, debug, or error instead of info.

    If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.

  3. Optional: You can reduce the number of permissions for the service account that you used to install the cluster.

    • If you assigned the Owner role to your service account, you can remove that role and replace it with the Viewer role.

    • If you included the Service Account Key Admin role, you can remove it.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.

  • Credential information also outputs to <installation_directory>/.openshift_install.log.

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.

  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

Installing the OpenShift CLI by downloading the binary

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.12. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure
  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.

  2. Select the architecture from the Product Variant drop-down list.

  3. Select the appropriate version from the Version drop-down list.

  4. Click Download Now next to the OpenShift v4.12 Linux Client entry and save the file.

  5. Unpack the archive:

    $ tar xvf <file>
  6. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH
Verification
  • After you install the OpenShift CLI, it is available using the oc command:

    $ oc <command>

Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure
  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.

  2. Select the appropriate version from the Version drop-down list.

  3. Click Download Now next to the OpenShift v4.12 Windows Client entry and save the file.

  4. Unzip the archive with a ZIP program.

  5. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path
Verification
  • After you install the OpenShift CLI, it is available using the oc command:

    C:\> oc <command>

Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure
  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.

  2. Select the appropriate version from the Version drop-down list.

  3. Click Download Now next to the OpenShift v4.12 macOS Client entry and save the file.

    For macOS arm64, choose the OpenShift v4.12 macOS arm64 Client entry.

  4. Unpack and unzip the archive.

  5. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH
Verification
  • After you install the OpenShift CLI, it is available using the oc command:

    $ oc <command>

Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites
  • You deployed an OpenShift Container Platform cluster.

  • You installed the oc CLI.

Procedure
  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami
    Example output
    system:admin

Optional: Adding Ingress DNS records for shared VPC installations

If the public DNS zone exists in a host project outside the project where you installed your cluster, you must manually create DNS records that point at the Ingress load balancer. You can create either a wildcard *.apps.{baseDomain}. or specific records. You can use A, CNAME, and other records per your requirements.

Prerequisites
  • You completed the installation of OpenShift Container Platform on GCP into a shared VPC.

  • Your public DNS zone exists in a host project separate from the service project that contains your cluster.

Procedure
  1. Verify that the Ingress router has created a load balancer and populated the EXTERNAL-IP field by running the following command:

    $ oc -n openshift-ingress get service router-default
    Example output
    NAME             TYPE           CLUSTER-IP      EXTERNAL-IP      PORT(S)                      AGE
    router-default   LoadBalancer   172.30.18.154   35.233.157.184   80:32288/TCP,443:31215/TCP   98
  2. Record the external IP address of the router by running the following command:

    $ oc -n openshift-ingress get service router-default --no-headers | awk '{print $4}'
  3. Add a record to your GCP public zone with the router’s external IP address and the name *.apps.<cluster_name>.<cluster_domain>. You can use the gcloud command line utility or the GCP web console.

  4. To add manual records instead of a wildcard record, create entries for each of the cluster’s current routes. You can gather these routes by running the following command:

    $ oc get --all-namespaces -o jsonpath='{range .items[*]}{range .status.ingress[*]}{.host}{"\n"}{end}{end}' routes
    Example output
    oauth-openshift.apps.your.cluster.domain.example.com
    console-openshift-console.apps.your.cluster.domain.example.com
    downloads-openshift-console.apps.your.cluster.domain.example.com
    alertmanager-main-openshift-monitoring.apps.your.cluster.domain.example.com
    prometheus-k8s-openshift-monitoring.apps.your.cluster.domain.example.com
Additional resources
  • See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.

Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.12, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager Hybrid Cloud Console.

After you confirm that your OpenShift Cluster Manager Hybrid Cloud Console inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

Next steps