The OpenShift Enterprise router is the ingress point for all external traffic destined for services in your OpenShift installation. OpenShift provides and supports the following two router plug-ins:

  • The HAProxy template router is the default plug-in. It uses the openshift3/ose-haproxy-router image to run an HAProxy instance alongside the template router plug-in inside a container on OpenShift Enterprise. It currently supports HTTP(S) traffic and TLS-enabled traffic via SNI. The router’s container listens on the host network interface, unlike most containers that listen only on private IPs. The router proxies external requests for route names to the IPs of actual pods identified by the service associated with the route.

  • The F5 router integrates with an existing F5 BIG-IP® system in your environment to synchronize routes. F5 BIG-IP® version 11.4 or newer is required in order to have the F5 iControl REST API.

The F5 router plug-in is available starting in OpenShift Enterprise 3.0.2.

Router Service Account

Before deploying an OpenShift Enterprise cluster, you must have a service account for the router. Starting in OpenShift Enterprise 3.1, a router service account is automatically created during a quick or advanced installation (previously, this required manual creation). This service account has permissions to a security context constraint (SCC) that allows it to specify host ports.

Use of labels (e.g., to define router shards) requires cluster-reader permission.

$ oadm policy add-cluster-role-to-user \
    cluster-reader \

Deploying the Default HAProxy Router

The oadm router command is provided with the administrator CLI to simplify the tasks of setting up routers in a new installation. If you followed the quick installation, then a default router was automatically created for you. The oadm router command creates the service and deployment configuration objects. Just about every form of communication between OpenShift Enterprise components is secured by TLS and uses various certificates and authentication methods. Use the --credentials option to specify what credentials the router should use to contact the master.

Routers directly attach to port 80 and 443 on all interfaces on a host. Restrict routers to hosts where port 80/443 is available and not being consumed by another service, and set this using node selectors and the scheduler configuration. As an example, you can achieve this by dedicating infrastructure nodes to run services such as routers.

It is recommended to use separate distinct openshift-router credentials with your router. The credentials can be provided using the --credentials flag to the oadm router command. Alternatively, the default cluster administrator credentials can be used from the $KUBECONFIG environment variable.

$ oadm router --dry-run --service-account=router \
    --credentials='/etc/origin/master/openshift-router.kubeconfig' (1)
1 --credentials is the path to the CLI configuration file for the openshift-router.

Router pods created using oadm router have default resource requests that a node must satisfy for the router pod to be deployed. In an effort to increase the reliability of infrastructure components, the default resource requests are used to increase the QoS tier of the router pods above pods without resource requests. The default values represent the observed minimum resources required for a basic router to be deployed and can be edited in the routers deployment configuration and you may want to increase them based on the load of the router.

Checking the Default Router

The default router service account, named router, is automatically created during quick and advanced installations. To verify that this account already exists:

$ oadm router --dry-run \
    --credentials='/etc/origin/master/openshift-router.kubeconfig' \
Viewing the Default Router

To see what the default router would look like if created:

$ oadm router -o yaml \
    --credentials='/etc/origin/master/openshift-router.kubeconfig' \
Creating a Router

The quick installation process automatically creates a default router. To create a router if it does not exist:

$ oadm router <router_name> --replicas=<number> \
    --credentials='/etc/origin/master/openshift-router.kubeconfig' \
Deploying the Router to a Labeled Node

To deploy the router to any node(s) that match a specified node label:

$ oadm router <router_name> --replicas=<number> --selector=<label> \
    --credentials='/etc/origin/master/openshift-router.kubeconfig' \

For example, if you want to create a router named router and have it placed on a node labeled with region=infra:

$ oadm router router --replicas=1 --selector='region=infra' \
  --credentials='/etc/origin/master/openshift-router.kubeconfig' \

During advanced installation, the openshift_hosted_router_selector and openshift_registry_selector Ansible settings are set to region=infra by default. The default router and registry will only be automatically deployed if a node exists that matches the region=infra label.

Multiple instances are created on different hosts according to the scheduler policy.

To deploy the router to any node(s) that match a specified node label:

$ oadm router <router_name> --replicas=<number> --selector=<label> \

For example, if you want to create a router named router and have it placed on a node labeled with region=infra:

$ oadm router router --replicas=1 --selector='region=infra' \
Using a Different Router Image

To use a different router image and view the router configuration that would be used:

$ oadm router <router_name> -o <format> --images=<image> \
    --credentials='/etc/origin/master/openshift-router.kubeconfig' \

For example:

$ oadm router region-west -o yaml --images=myrepo/somerouter:mytag \
    --credentials='/etc/origin/master/openshift-router.kubeconfig' \

High Availability

You can set up a highly-available router on your OpenShift Enterprise cluster using IP failover.

Customizing the Router Service Ports

You can customize the service ports that a template router binds to by setting the environment variables ROUTER_SERVICE_HTTP_PORT and ROUTER_SERVICE_HTTPS_PORT. This can be done by creating a template router, then editing its deployment configuration.

The following example creates a router deployment with 0 replicas and customizes the router service HTTP and HTTPS ports, then scales it appropriately (to 1 replica).

$ oadm router --replicas=0 --ports='10080:10080,10443:10443' (1)
$ oc set env dc/router ROUTER_SERVICE_HTTP_PORT=10080  \
$ oc scale dc/router --replicas=1
1 Ensures exposed ports are appropriately set for routers that use the container networking mode --host-network=false.

If you do customize the template router service ports, you will also need to ensure that the nodes where the router pods run have those custom ports opened in the firewall (either via Ansible or iptables, or any other custom method that you use via firewall-cmd).

The following is an example using iptables to open the custom router service ports.

$ iptables -A INPUT -p tcp --dport 10080 -j ACCEPT
$ iptables -A INPUT -p tcp --dport 10443 -j ACCEPT

Working With Multiple Routers

An administrator can create multiple routers with the same definition to serve the same set of routes. By having different groups of routers with different namespace or route selectors, they can vary the routes that the router serves.

Multiple routers can be grouped to distribute routing load in the cluster and separate tenants to different routers or shards. Each router or shard in the group handles routes based on the selectors in the router. An administrator can create shards over the whole cluster using ROUTE_LABELS. A user can create shards over a namespace (project) by using NAMESPACE_LABELS.

Adding a Node Selector to a Deployment Configuration

Making specific routers deploy on specific nodes requires two steps:

  1. Add a label to the desired node:

    $ oc label node "router=first"
  2. Add a node selector to the router deployment configuration:

    $ oc edit dc <deploymentConfigName>

    Add the template.spec.nodeSelector field with a key and value corresponding to the label:

          creationTimestamp: null
            router: router1
          nodeSelector:      (1)
            router: "first"
    1 The key and value are router and first, respectively, corresponding to the router=first label.

Using Router Shards

The access controls are based on the service account that the router is run with.

Using NAMESPACE_LABELS and/or ROUTE_LABELS, a router can filter out the namespaces and/or routes that it should service. This enables you to partition routes amongst multiple router deployments effectively distributing the set of routes.

Example: A router deployment finops-router is run with route selector NAMESPACE_LABELS="name in (finance, ops)" and a router deployment dev-router is run with route selector NAMESPACE_LABELS="name=dev".

If all routes are in the 3 namespaces finance, ops or dev, then this could effectively distribute our routes across two router deployments.

In the above scenario, sharding becomes a special case of partitioning with no overlapping sets. Routes are divided amongst multiple router shards.

The criteria for route selection governs how the routes are distributed. It is possible to have routes that overlap accross multiple router deployments.

Example: In addition to the finops-router and dev-router in the example above, we also have an devops-router which is run with a route selector NAMESPACE_LABELS="name in (dev, ops)".

The routes in namespaces dev or ops now are serviced by two different router deployments. This becomes a case where we have partitioned the routes with an overlapping set.

In addition, this enables us to create more complex routing rules ala divert high priority traffic to the dedicated finops-router but send the lower priority ones to the devops-router.

NAMESPACE_LABELS allows filtering the projects to service and selecting all the routes from those projects. But we may want to partition routes based on other criteria in the routes themselves. The ROUTE_LABELS selector allows you to slice-and-dice the routes themselves.

Example: A router deployment prod-router is run with route selector ROUTE_LABELS="mydeployment=prod" and a router deployment devtest-router is run with route selector ROUTE_LABELS="mydeployment in (dev, test)"

Example assumes you have all the routes you wish to serviced tagged with a label "mydeployment=<tag>".

Creating Router Shards

Router sharding lets you select how routes are distributed among a set of routers.

Router sharding is based on labels; you set labels on the routes in the pool, and express the desired subset of those routes for the router to serve with a selection expression via the oc set env command.

First, ensure that service account associated with the router has the cluster reader permission.

The rest of this section describes an extended example. Suppose there are 26 routes, named a — z, in the pool, with various labels:

Possible labels on routes in the pool
sla=high       geo=east     hw=modest     dept=finance
sla=medium     geo=west     hw=strong     dept=dev
sla=low                                   dept=ops

These labels express the concepts: service level agreement, geographical location, hardware requirements, and department. The routes in the pool can have at most one label from each column. Some routes may have other labels, entirely, or none at all.

Name(s) SLA Geo HW Dept Other Labels











c, d, e




g — k




l — s




t — z



Here is a convenience script mkshard that ilustrates how oadm router, oc set env, and oc scale work together to make a router shard.

router=router-shard-$id           (1)
oadm router $router --replicas=0  (2)
dc=dc/router-shard-$id            (3)
oc set env   $dc ROUTE_LABELS="$sel"  (4)
oc scale $dc --replicas=3         (5)
1 The created router has name router-shard-<id>.
2 Specify no scaling for now.
3 The deployment configuration for the router.
4 Set the selection expression using oc set env. The selection expression is the value of the ROUTE_LABELS environment variable.
5 Scale it up.

Running mkshard several times creates several routers:

Router Selection Expression Routes



a, l — s



b, t — z



g — k

Modifying Router Shards

Because a router shard is a construct based on labels, you can modify either the labels (via oc label) or the selection expression.

This section extends the example started in the Creating Router Shards section, demonstrating how to change the selection expression.

Here is a convenience script modshard that modifies an existing router to use a new selection expression:

# Usage: modshard ID SELECTION-EXPRESSION...
router=router-shard-$id       (1)
dc=dc/$router                 (2)
oc scale $dc --replicas=0     (3)
oc set env   $dc "$@"             (4)
oc scale $dc --replicas=3     (5)
1 The modified router has name router-shard-<id>.
2 The deployment configuration where the modifications occur.
3 Scale it down.
4 Set the new selection expression using oc set env. Unlike mkshard from the Creating Router Shards section, the selection expression specified as the non-ID arguments to modshard must include the environment variable name as well as its value.
5 Scale it back up.

In modshard, the oc scale commands are not necessary if the deployment strategy for router-dhsard-<id> is Rolling.

For example, to expand the department for router-shard-3 to include ops as well as dev:

$ modshard 3 ROUTE_LABELS='dept in (dev, ops)'

The result is that router-shard-3 now selects routes g — s (the combined sets of g — k and l — s).

This example takes into account that there are only three departments in this example scenario, and specifies a department to leave out of the shard, thus achieving the same result as the preceding example:

$ modshard 3 ROUTE_LABELS='dept != finanace'

This example specifies shows three comma-separated qualities, and results in only route b being selected:

$ modshard 3 ROUTE_LABELS='hw=strong,type=dynamic,geo=west'

Similarly to ROUTE_LABELS, which involve a route’s labels, you can select routes based on the labels of the route’s namespace labels, with the NAMESPACE_LABELS environment variable. This example modifies router-shard-3 to serve routes whose namespace has the label frequency=weekly:

$ modshard 3 NAMESPACE_LABELS='frequency=weekly'

The last example combines ROUTE_LABELS and NAMESPACE_LABELS to select routes with label sla=low and whose namespace has the label frequency=weekly:

$ modshard 3 \
    NAMESPACE_LABELS='frequency=weekly' \

Using Namespace Router Shards

The routes for a project can be handled by a selected router by using NAMESPACE_LABELS. The router is given a selector for a NAMESPACE_LABELS label and the project that wants to use the router applies the NAMESPACE_LABELS label to its namespace.

First, ensure that service account associated with the router has the cluster reader permission. This permits the router to read the labels that are applied to the namespaces.

Now create and label the router:

$ oadm router ...  --service-account=router
$ oc set env dc/router NAMESPACE_LABELS="router=r1"

Because the router has a selector for a namespace, the router will handle routes for that namespace. So, for example:

$ oc label namespace default "router=r1"

Now create routes in the default namespace, and the route is available in the default router:

$ oc create -f route1.yaml

Now create a new project (namespace) and create a route, route2.

$ oc new-project p1
$ oc create -f route2.yaml

And notice the route is not available in your router. Now label namespace p1 with "router=r1"

$ oc label namespace p1 "router=r1"

Which makes the route available to the router.

Note that removing the label from the namespace won’t have immediate effect (as we don’t see the updates in the router), so if you redeploy/start a new router pod, you should see the unlabelled effects.

$ oc scale dc/router --replicas=0 && oc scale dc/router --replicas=1

Finding the Host Name of the Router

When exposing a service, a user can use the same route from the DNS name that external users use to access the application. The network administrator of the external network must make sure the host name resolves to the name of a router that has admitted the route. The user can set up their DNS with a CNAME that points to this host name. However, the user may not know the host name of the router. When it is not known, the cluster administrator can provide it.

The cluster administrator can use the --router-canonical-hostname option with the router’s canonical host name when creating the router. For example:

# oadm router myrouter --router-canonical-hostname="rtr.example.com"

This creates the ROUTER_CANONCAL_HOSTNAME environment variable in the router’s deployment configuration containing the host name of the router.

For routers that already exist, the cluster administrator can edit the router’s deployment configuration and add the ROUTER_CANONICAL_HOSTNAME environment variable:

        - env:
            value: rtr.example.com

The ROUTER_CANONICAL_HOSTNAME value is displayed in the route status for all routers that have admitted the route. The route status is refreshed every time the router is reloaded.

When a user creates a route, all of the active routers evaluate the route and, if conditions are met, admit it. When a router that defines the ROUTER_CANONCAL_HOSTNAME environment variable admits the route, the router places the value in the routerCanonicalHostname field in the route status. The user can examine the route status to determine which, if any, routers have admitted the route, select a router from the list, and find the host name of the router to pass along to the network administrator.

      lastTransitionTime: 2016-12-07T15:20:57Z
      status: "True"
      type: Admitted
      host: hello.in.mycloud.com
      routerCanonicalHostname: rtr.example.com
      routerName: myrouter
      wildcardPolicy: None

oc describe inclues the host name when available:

$ oc describe route/hello-route3
Requested Host: hello.in.mycloud.com exposed on router myroute (host rtr.example.com) 12 minutes ago

Using the above information, the user can ask the DNS administrator to set up a CNAME from the route’s host, hello.in.mycloud.com, to the router’s canonical hostname, rtr.example.com. This results in any traffic to hello.in.mycloud.com reaching the user’s application.

Customizing the Default Routing Subdomain

You can customize the default routing subdomain by modifying the master configuration file. Routes that do not specify a host name would have one generated using this default routing subdomain.

Modifying the Master Configuration file

You can customize the suffix used as the default routing subdomain for your environment using the master configuration file (the /etc/origin/master/master-config.yaml file by default).

The following example shows how you can set the configured suffix to v3.openshift.test:

  subdomain: v3.openshift.test

This change requires a restart of the master if it is running.

With the OpenShift Enterprise master(s) running the above configuration, the generated host name for the example of a route named no-route-hostname without a host name added to a namespace mynamespace would be:


Forcing Route Host Names to a Custom Routing Subdomain

If an administrator wants to restrict all routes to a specific routing subdomain, they can pass the --force-subdomain option to the oadm router command. This forces the router to override any host names specified in a route and generate one based on the template provided to the --force-subdomain option.

The following example runs a router, which overrides the route host names using a custom subdomain template ${name}-${namespace}.apps.example.com.

$ oadm router --force-subdomain='${name}-${namespace}.apps.example.com'

Using Wildcard Certificates

A TLS-enabled route that does not include a certificate uses the router’s default certificate instead. In most cases, this certificate should be provided by a trusted certificate authority, but for convenience you can use the OpenShift Enterprise CA to create the certificate. For example:

$ CA=/etc/origin/master
$ oadm ca create-server-cert --signer-cert=$CA/ca.crt \
      --signer-key=$CA/ca.key --signer-serial=$CA/ca.serial.txt \
      --hostnames='*.cloudapps.example.com' \
      --cert=cloudapps.crt --key=cloudapps.key

The router expects the certificate and key to be in PEM format in a single file:

$ cat cloudapps.crt cloudapps.key $CA/ca.crt > cloudapps.router.pem

From there you can use the --default-cert flag:

$ oadm router --default-cert=cloudapps.router.pem --service-account=router \

Browsers only consider wildcards valid for subdomains one level deep. So in this example, the certificate would be valid for a.cloudapps.example.com but not for a.b.cloudapps.example.com.

Using Secured Routes

Currently, password protected key files are not supported. HAProxy prompts for a password upon starting and does not have a way to automate this process. To remove a passphrase from a keyfile, you can run:

# openssl rsa -in <passwordProtectedKey.key> -out <new.key>

Here is an example of how to use a secure edge terminated route with TLS termination occurring on the router before traffic is proxied to the destination. The secure edge terminated route specifies the TLS certificate and key information. The TLS certificate is served by the router front end.

First, start up a router instance:

# oadm router --replicas=1 --service-account=router  \

Next, create a private key, csr and certificate for our edge secured route. The instructions on how to do that would be specific to your certificate authority and provider. For a simple self-signed certificate for a domain named www.example.test, see the example shown below:

# sudo openssl genrsa -out example-test.key 2048
# sudo openssl req -new -key example-test.key -out example-test.csr  \
  -subj "/C=US/ST=CA/L=Mountain View/O=OS3/OU=Eng/CN=www.example.test"
# sudo openssl x509 -req -days 366 -in example-test.csr  \
      -signkey example-test.key -out example-test.crt

Generate a route using the above certificate and key.

$ oc create route edge --service=my-service \
    --hostname=www.example.test \
    --key=example-test.key --cert=example-test.crt
route "my-service" created

Look at its definition.

$ oc get route/my-service -o yaml
apiVersion: v1
kind: Route
  name:  my-service
  host: www.example.test
    kind: Service
    name: my-service
    termination: edge
    key: |
      -----BEGIN PRIVATE KEY-----
      -----END PRIVATE KEY-----
    certificate: |
      -----BEGIN CERTIFICATE-----
      -----END CERTIFICATE-----

Make sure your DNS entry for www.example.test points to your router instance(s) and the route to your domain should be available. The example below uses curl along with a local resolver to simulate the DNS lookup:

# routerip=""  #  replace with IP address of one of your router instances.
# curl -k --resolve www.example.test:443:$routerip https://www.example.test/

Using the Container Network Stack

The OpenShift Enterprise router runs inside a container and the default behavior is to use the network stack of the host (i.e., the node where the router container runs). This default behavior benefits performance because network traffic from remote clients does not need to take multiple hops through user space to reach the target service and container.

Additionally, this default behavior enables the router to get the actual source IP address of the remote connection rather than getting the node’s IP address. This is useful for defining ingress rules based on the originating IP, supporting sticky sessions, and monitoring traffic, among other uses.

This host network behavior is controlled by the --host-network router command line option, and the default behaviour is the equivalent of using --host-network=true. If you wish to run the router with the container network stack, use the --host-network=false option when creating the router. For example:

$ oadm router \
    --credentials='/etc/origin/master/openshift-router.kubeconfig' \
    --service-account=router \

Internally, this means the router container must publish the 80 and 443 ports in order for the external network to communicate with the router.

Running with the container network stack means that the router sees the source IP address of a connection to be the NATed IP address of the node, rather than the actual remote IP address.

On OpenShift Enterprise clusters using multi-tenant network isolation, routers on a non-default namespace with the --host-network=false option will load all routes in the cluster, but routes across the namespaces will not be reachable due to network isolation. With the --host-network=true option, routes bypass the container network and it can access any pod in the cluster. If isolation is needed in this case, then do not add routes across the namespaces.

Exposing Router metrics

Using the --metrics-image and --expose-metrics options, you can configure the OpenShift Enterprise router to run a sidecar container that exposes or publishes router metrics for consumption by external metrics collection and aggregation systems (e.g. Prometheus, statsd).

Depending on your router implementation, the image is appropriately set up and the metrics sidecar container is started when the router is deployed. For example, the HAProxy-based router implementation defaults to using the prom/haproxy-exporter image to run as a sidecar container, which can then be used as a metrics datasource by the Prometheus server.

The --metrics-image option overrides the defaults for HAProxy-based router implementations and, in the case of custom implementations, enables the image to use for a custom metrics exporter or publisher.

  1. Grab the HAProxy Prometheus exporter image from the Docker registry:

    $ sudo docker pull prom/haproxy-exporter
  2. Create the OpenShift Enterprise router:

    $ oadm router \
        --credentials='/etc/origin/master/openshift-router.kubeconfig' \
        --service-account=router --expose-metrics

    Or, optionally, use the --metrics-image option to override the HAProxy defaults:

    $ oadm router \
        --credentials='/etc/origin/master/openshift-router.kubeconfig' \
        --service-account=router --expose-metrics  \
  3. Once the haproxy-exporter containers (and your HAProxy router) have started, point Prometheus to the sidecar container on port 9101 on the node where the haproxy-exporter container is running:

    $ haproxy_exporter_ip="<enter-ip-address-or-hostname>"
    $ cat > haproxy-scraper.yml  <<CFGEOF
      scrape_interval: "60s"
      scrape_timeout:  "10s"
      # external_labels:
        # source: openshift-router
      - job_name:  "haproxy"
          - targets:
            - "${haproxy_exporter_ip}:9101"
    $ #  And start prometheus as you would normally using the above config file.
    $ echo "  - Example:  prometheus -config.file=haproxy-scraper.yml "
    $ echo "              or you can start it as a container on {product-title}!!
    $ echo "  - Once the prometheus server is up, view the {product-title} HAProxy "
    $ echo "    router metrics at: http://<ip>:9090/consoles/haproxy.html "

Preventing Connection Failures During Restarts

If you connect to the router while the proxy is reloading, there is a small chance that your connection will end up in the wrong network queue and be dropped. The issue is being addressed. In the meantime, it is possible to work around the problem by installing iptables rules to prevent connections during the reload window. However, doing so means that the router needs to run with elevated privilege so that it can manipulate iptables on the host. It also means that connections that happen during the reload are temporarily ignored and must retransmit their connection start, lengthening the time it takes to connect, but preventing connection failure.

To prevent this, configure the router to use iptables by changing the service account, and setting an environment variable on the router.

Use a Privileged SCC

When creating the router, allow it to use the privileged SCC. This gives the router user the ability to create containers with root privileges on the nodes:

$ oadm policy add-scc-to-user privileged -z router

Patch the Router Deployment Configuration to Create a Privileged Container

You can now create privileged containers. Next, configure the router deployment configuration to use the privilege so that the router can set the iptables rules it needs. This patch changes the router deployment configuration so that the container that is created runs as root:

$ oc patch dc router -p '{"spec":{"template":{"spec":{"containers":[{"name":"router","securityContext":{"privileged":true}}]}}}}'

Configure the Router to Use iptables

Set the option on the router deployment configuration:

$ oc set env dc/router -c router DROP_SYN_DURING_RESTART=1

If you used a non-default name for the router, you must change dc/router accordingly.

Deploying a Customized HAProxy Router

The HAProxy router is based on a golang template that generates the HAProxy configuration file from a list of routes. If you want a customized template router to meet your needs, you can customize the template file, build a new Docker image, and run a customized router. Alternatively you can use a ConfigMap.

One common case for this might be implementing new features within the application back ends. For example, it might be desirable in a highly-available setup to use stick-tables that synchronizes between peers. The router plug-in provides all the facilities necessary to make this customization.

You can obtain a new haproxy-config.template file from the latest router image by running:

# docker run --rm --interactive=true --tty --entrypoint=cat \
    registry.access.redhat.com/openshift3/ose-haproxy-router:v3.0.2.0 haproxy-config.template

Save this content to a file for use as the basis of your customized template.

Using a ConfigMap to Replace the Router Configuration Template

You can use ConfigMap to customize the router instance without rebuilding the router image. The haproxy-config.template, reload-haproxy, and other scripts can be modified as well as creating and modifying router environment variables.

  1. Copy the haproxy-config.template that you want to modify as described above. Modify it as desired.

  2. Create a ConfigMap:

    $ oc create configmap customrouter --from-file=haproxy-config.template

    The customrouter ConfigMap now contains a copy of the modified haproxy-config.template file.

  3. Modify the router deployment configuration to mount the ConfigMap as a file and point the TEMPLATE_FILE environment variable to it. This can be done via oc env and oc volume commands, or alternatively by editing the router deployment configuration.

    Using oc commands
    $ oc env dc/router \
    $ oc volume dc/router --add --overwrite \
        --name=config-volume \
        --mount-path=/var/lib/haproxy/conf/custom \
        --source='{"configMap": { "name": "customrouter"}}'
    Editing the Router Deployment Configuration

    Use oc edit dc router to edit the router deployment configuration with a text editor.

            - name: STATS_USERNAME
              value: admin
            - name: TEMPLATE_FILE  (1)
              value: /var/lib/haproxy/conf/custom/haproxy-config.template
            image: openshift/origin-haproxy-routerp
            terminationMessagePath: /dev/termination-log
            volumeMounts: (2)
            - mountPath: /var/lib/haproxy/conf/custom
              name: config-volume
          dnsPolicy: ClusterFirst
          terminationGracePeriodSeconds: 30
          volumes: (3)
          - configMap:
              name: customrouter
            name: config-volume
      test: false
    1 In the spec.container.env field, add the TEMPLATE_FILE environment variable to point to the mounted haproxy-config.template file.
    2 Add the spec.container.volumeMounts field to create the mount point.
    3 Add a new spec.volumes field to mention the ConfigMap.

    Save the changes and exit the editor. This restarts the router.

Using Stick Tables

The following example customization can be used in a highly-available routing setup to use stick-tables that synchronize between peers.

Adding a Peer Section

In order to synchronize stick-tables amongst peers you must a define a peers section in your HAProxy configuration. This section determines how HAProxy will identify and connect to peers. The plug-in provides data to the template under the .PeerEndpoints variable to allow you to easily identify members of the router service. You may add a peer section to the haproxy-config.template file inside the router image by adding:

{{ if (len .PeerEndpoints) gt 0 }}
peers openshift_peers
  {{ range $endpointID, $endpoint := .PeerEndpoints }}
    peer {{$endpoint.TargetName}} {{$endpoint.IP}}:1937
  {{ end }}
{{ end }}

Changing the Reload Script

When using stick-tables, you have the option of telling HAProxy what it should consider the name of the local host in the peer section. When creating endpoints, the plug-in attempts to set the TargetName to the value of the endpoint’s TargetRef.Name. If TargetRef is not set, it will set the TargetName to the IP address. The TargetRef.Name corresponds with the Kubernetes host name, therefore you can add the -L option to the reload-haproxy script to identify the local host in the peer section.

peer_name=$HOSTNAME (1)

if [ -n "$old_pid" ]; then
  /usr/sbin/haproxy -f $config_file -p $pid_file -L $peer_name -sf $old_pid
  /usr/sbin/haproxy -f $config_file -p $pid_file -L $peer_name
1 Must match an endpoint target name that is used in the peer section.

Modifying Back Ends

Finally, to use the stick-tables within back ends, you can modify the HAProxy configuration to use the stick-tables and peer set. The following is an example of changing the existing back end for TCP connections to use stick-tables:

            {{ if eq $cfg.TLSTermination "passthrough" }}
backend be_tcp_{{$cfgIdx}}
  balance leastconn
  timeout check 5000ms
  stick-table type ip size 1m expire 5m{{ if (len $.PeerEndpoints) gt 0 }} peers openshift_peers {{ end }}
  stick on src
                {{ range $endpointID, $endpoint := $serviceUnit.EndpointTable }}
  server {{$endpointID}} {{$endpoint.IP}}:{{$endpoint.Port}} check inter 5000ms
                {{ end }}
            {{ end }}

After this modification, you can rebuild your router.

Rebuilding Your Router

After you have made any desired modifications to the template, such as the example stick tables customization, you must rebuild your router for your changes to go in effect:

  1. Rebuild the Docker image to include your customized template.

  2. Push the resulting image to your repository.

  3. Create the router specifying your new image, either:

    1. in the pod’s object definition directly, or

    2. by adding the --images=<repo>/<image>:<tag> flag to the oadm router command when creating a highly-available routing service.

Deploying the F5 Router

The F5 router plug-in is available starting in OpenShift Enterprise 3.0.2.

The F5 router plug-in is provided as a Docker image and run as a pod, just like the default HAProxy router. Deploying the F5 router is done similarly as well, using the oadm router command but providing additional flags (or environment variables) to specify the following parameters for the F5 BIG-IP® host:

Flag Description


Specifies that an F5 router should be launched (the default --type is haproxy-router).


Specifies the F5 BIG-IP® host’s management interface’s host name or IP address.


Specifies the F5 BIG-IP® user name (typically admin).


Specifies the F5 BIG-IP® password.


Specifies the name of the F5 virtual server for HTTP connections.


Specifies the name of the F5 virtual server for HTTPS connections.


Specifies the path to the SSH private key file for the F5 BIG-IP® host. Required to upload and delete key and certificate files for routes.


A Boolean flag that indicates that the F5 router should skip strict certificate verification with the F5 BIG-IP® host.

As with the HAProxy router, the oadm router command creates the service and deployment configuration objects, and thus the replication controllers and pod(s) in which the F5 router itself runs. The replication controller restarts the F5 router in case of crashes. Because the F5 router is only watching routes and endpoints and configuring F5 BIG-IP® accordingly, running the F5 router in this way along with an appropriately configured F5 BIG-IP® deployment should satisfy high-availability requirements.

The F5 router will also need to be run in privileged mode because route certificates get copied using scp:

$ oadm policy remove-scc-from-user hostnetwork -z router
$ oadm policy add-scc-to-user privileged -z router

To deploy the F5 router:

  1. First, establish a tunnel using a ramp node, which allows for the routing of traffic to pods through the OpenShift Enterprise SDN.

  2. Run the oadm router command with the appropriate flags. For example:

    $ oadm router \
        --type=f5-router \
        --external-host= \
        --external-host-username=admin \
        --external-host-password=mypassword \
        --external-host-http-vserver=ose-vserver \
        --external-host-https-vserver=https-ose-vserver \
        --external-host-private-key=/path/to/key \
        --credentials='/etc/origin/master/openshift-router.kubeconfig' \(1)
    1 --credentials is the path to the CLI configuration file for the openshift-router. It is recommended using an openshift-router specific profile with appropriate permissions.

What’s Next?

If you deployed an HAProxy router, you can learn more about monitoring the router.

If you have not yet done so, you can: