$ roxctl -e "$ROX_CENTRAL_ADDRESS" central backup
roxctl
CLI
roxctl
CLI
You can upgrade to the latest version of Red Hat Advanced Cluster Security for Kubernetes (RHACS) from a supported older version.
|
To upgrade Red Hat Advanced Cluster Security for Kubernetes to the latest version, you must perform the following:
Backup the Central database
Upgrade the roxctl
CLI
Generate Central database provisioning bundle
Upgrade Central
Upgrade Scanner
Verify all the upgraded secured clusters
You can back up the Central database and use that backup for rolling back from a failed upgrade or data restoration in the case of an infrastructure disaster.
You must have an API token with read
permission for all resources of Red Hat Advanced Cluster Security for Kubernetes. The Analyst system role has read
permissions for all resources.
You have installed the roxctl
CLI.
You have configured the ROX_API_TOKEN
and the ROX_CENTRAL_ADDRESS
environment variables.
Run the backup command:
$ roxctl -e "$ROX_CENTRAL_ADDRESS" central backup
roxctl
CLITo upgrade the roxctl
CLI to the latest version you must uninstall the existing version of roxctl
CLI and then install the latest version of the roxctl
CLI.
You can uninstall the roxctl
CLI binary on Linux by using the following procedure.
Find and delete the roxctl
binary:
$ ROXPATH=$(which roxctl) && rm -f $ROXPATH (1)
1 | Depending on your environment, you might need administrator rights to delete the roxctl binary. |
You can install the roxctl
CLI binary on Linux by using the following procedure.
Download the latest version of the roxctl
CLI:
$ curl -O https://mirror.openshift.com/pub/rhacs/assets/4.1.5/bin/Linux/roxctl
Make the roxctl
binary executable:
$ chmod +x roxctl
Place the roxctl
binary in a directory that is on your PATH
:
To check your PATH
, execute the following command:
$ echo $PATH
Verify the roxctl
version you have installed:
$ roxctl version
You can install the roxctl
CLI binary on macOS by using the following procedure.
Download the latest version of the roxctl
CLI:
$ curl -O https://mirror.openshift.com/pub/rhacs/assets/4.1.5/bin/Darwin/roxctl
Remove all extended attributes from the binary:
$ xattr -c roxctl
Make the roxctl
binary executable:
$ chmod +x roxctl
Place the roxctl
binary in a directory that is on your PATH
:
To check your PATH
, execute the following command:
$ echo $PATH
Verify the roxctl
version you have installed:
$ roxctl version
You can install the roxctl
CLI binary on Windows by using the following procedure.
Download the latest version of the roxctl
CLI:
$ curl -O https://mirror.openshift.com/pub/rhacs/assets/4.1.5/bin/Windows/roxctl.exe
Verify the roxctl
version you have installed:
$ roxctl version
Before upgrading Central you must first generate a database provisioning bundle. This bundle is a tar
archive that has a README file, a few YAML configuration files, and some scripts that aid in the installation process.
You must have an API token with the Admin
role.
You must have installed the roxctl
CLI.
Set the ROX_API_TOKEN
and the ROX_CENTRAL_ADDRESS
environment variables:
$ export ROX_API_TOKEN=<api_token>
$ export ROX_CENTRAL_ADDRESS=<address>:<port_number>
Run the central db generate
command:
$ roxctl -e $ROX_CENTRAL_ADDRESS central db generate \
<cluster_type> \ (1)
<storage> \ (2)
--output-dir <bundle_dir> \ (3)
--central-db-image registry.redhat.io/advanced-cluster-security/rhacs-central-db-rhel8:4.1.5
1 | cluster-type is the type of your cluster, specify k8s for Kubernetes and openshift for OpenShift Container Platform. |
2 | For storage , specify hostpath or pvc . If you use pvc you can use additional options to specify volume name, size, and storage class. Run $ roxctl central db generate openshift pvc -h for more details. |
3 | For bundle-dir specify the path where you want to save the generated provisioning bundle. |
Use the Central DB provisioning bundle to create additional resources.
Before you upgrade the Central cluster, you must use the Central DB provisioning bundle to create additional resources that the Central cluster requires. This bundle is a tar
archive that has a README file, a few YAML configuration files, and some scripts that aid in the installation process.
You must have generated a Central DB provisioning bundle.
You must have extracted the tar
archive bundle.
Open the extracted bundle directory and run the setup
script:
$ ./scripts/setup.sh
Run the deploy-central-db
script:
$ ./deploy-central-db.sh
After you have created a backup of the Central database and generated the necessary resources by using the provisioning bundle, the next step is to upgrade the Central cluster. This process involves upgrading Central and Scanner.
You can update Central to the latest version by downloading and deploying the updated images.
Run the following command to update the Central image:
$ oc -n stackrox set image deploy/central central=registry.redhat.io/advanced-cluster-security/rhacs-main-rhel8:4.1.5 (1)
1 | If you use Kubernetes, enter kubectl instead of oc . |
Verify that the new pods have deployed:
$ oc get deploy -n stackrox -o wide
$ oc get pod -n stackrox --watch
You can update Scanner to the latest version by downloading and deploying the updated images.
Run the following command to update the Scanner image:
$ oc -n stackrox set image deploy/scanner scanner=registry.redhat.io/advanced-cluster-security/rhacs-scanner-rhel8:4.1.5 (1)
1 | If you use Kubernetes, enter kubectl instead of oc . |
Verify that the new pods have deployed:
$ oc get deploy -n stackrox -o wide
$ oc get pod -n stackrox --watch
After you have upgraded both Central and Scanner, verify that the Central cluster upgrade is complete.
Check the Central logs by running the following command:
$ oc logs -n stackrox deploy/central -c central (1)
1 | If you use Kubernetes, enter kubectl instead of oc . |
No database restore directory found (this is not an error).
Migrator: 2023/04/19 17:58:54: starting DB compaction
Migrator: 2023/04/19 17:58:54: Free fraction of 0.0391 (40960/1048576) is < 0.7500. Will not compact
badger 2023/04/19 17:58:54 INFO: All 1 tables opened in 2ms
badger 2023/04/19 17:58:55 INFO: Replaying file id: 0 at offset: 846357
badger 2023/04/19 17:58:55 INFO: Replay took: 50.324µs
badger 2023/04/19 17:58:55 DEBUG: Value log discard stats empty
Migrator: 2023/04/19 17:58:55: DB is up to date. Nothing to do here.
badger 2023/04/19 17:58:55 INFO: Got compaction priority: {level:0 score:1.73 dropPrefix:[]}
version: 2023/04/19 17:58:55.189866 ensure.go:49: Info: Version found in the DB was current. We’re good to go!
After upgrading Central services, you must upgrade all secured clusters.
|
To complete manual upgrades of each secured cluster running Sensor, Collector, and Admission controller, follow the instructions in this section.
You must update the sensor, collector and compliance images on each secured cluster when not using automatic upgrades.
If you are using Kubernetes, use |
Update the Sensor image:
$ oc -n stackrox set image deploy/sensor sensor=registry.redhat.io/advanced-cluster-security/rhacs-main-rhel8:4.1.5 (1)
1 | If you use Kubernetes, enter kubectl instead of oc . |
Update the Compliance image:
$ oc -n stackrox set image ds/collector compliance=registry.redhat.io/advanced-cluster-security/rhacs-main-rhel8:4.1.5 (1)
1 | If you use Kubernetes, enter kubectl instead of oc . |
Update the Collector image:
$ oc -n stackrox set image ds/collector collector=registry.redhat.io/advanced-cluster-security/rhacs-collector-rhel8:4.1.5 (1)
1 | If you use Kubernetes, enter kubectl instead of oc . |
If you are using the collector slim image, run the following command instead:
|
Update the admission control image:
$ oc -n stackrox set image deploy/admission-control admission-control=registry.redhat.io/advanced-cluster-security/rhacs-main-rhel8:4.1.5
After you have upgraded secured clusters, verify that the updated pods are working.
Check that the new pods have deployed:
$ oc get deploy,ds -n stackrox -o wide (1)
1 | If you use Kubernetes, enter kubectl instead of oc . |
$ oc get pod -n stackrox --watch (1)
1 | If you use Kubernetes, enter kubectl instead of oc . |
If you use OpenShift Container Platform, you can enable scanning of Red Hat Enterprise Linux CoreOS (RHCOS) nodes for vulnerabilities by using Red Hat Advanced Cluster Security for Kubernetes (RHACS).
For scanning RHCOS node hosts of the Secured cluster, you must have installed Secured cluster on OpenShift Container Platform 4.10 or later. For more information on supported managed and self-managed OpenShift Container Platform versions, see Red Hat Advanced Cluster Security for Kubernetes Support Policy.
Run one of the following commands to update the compliance container.
For a default compliance container with metrics disabled, run the following command:
$ oc -n stackrox patch daemonset/collector -p '{"spec":{"template":{"spec":{"containers":[{"name":"compliance","env":[{"name":"ROX_METRICS_PORT","value":"disabled"},{"name":"ROX_NODE_SCANNING_ENDPOINT","value":"127.0.0.1:8444"},{"name":"ROX_NODE_SCANNING_INTERVAL","value":"4h"},{"name":"ROX_NODE_SCANNING_INTERVAL_DEVIATION","value":"24m"},{"name":"ROX_NODE_SCANNING_MAX_INITIAL_WAIT","value":"5m"},{"name":"ROX_RHCOS_NODE_SCANNING","value":"true"},{"name":"ROX_CALL_NODE_INVENTORY_ENABLED","value":"true"}]}]}}}}'
For a compliance container with Prometheus metrics enabled, run the following command:
$ oc -n stackrox patch daemonset/collector -p '{"spec":{"template":{"spec":{"containers":[{"name":"compliance","env":[{"name":"ROX_METRICS_PORT","value":":9091"},{"name":"ROX_NODE_SCANNING_ENDPOINT","value":"127.0.0.1:8444"},{"name":"ROX_NODE_SCANNING_INTERVAL","value":"4h"},{"name":"ROX_NODE_SCANNING_INTERVAL_DEVIATION","value":"24m"},{"name":"ROX_NODE_SCANNING_MAX_INITIAL_WAIT","value":"5m"},{"name":"ROX_RHCOS_NODE_SCANNING","value":"true"},{"name":"ROX_CALL_NODE_INVENTORY_ENABLED","value":"true"}]}]}}}}'
Update the Collector DaemonSet (DS) by taking the following steps:
Add new volume mounts to Collector DS by running the following command:
$ oc -n stackrox patch daemonset/collector -p '{"spec":{"template":{"spec":{"volumes":[{"name":"tmp-volume","emptyDir":{}},{"name":"cache-volume","emptyDir":{"sizeLimit":"200Mi"}}]}}}}'
Add the new NodeScanner
container by running the following command:
$ oc -n stackrox patch daemonset/collector -p '{"spec":{"template":{"spec":{"containers":[{"command":["/scanner","--nodeinventory","--config=",""],"env":[{"name":"ROX_NODE_NAME","valueFrom":{"fieldRef":{"apiVersion":"v1","fieldPath":"spec.nodeName"}}},{"name":"ROX_CLAIR_V4_SCANNING","value":"true"},{"name":"ROX_COMPLIANCE_OPERATOR_INTEGRATION","value":"true"},{"name":"ROX_CSV_EXPORT","value":"false"},{"name":"ROX_DECLARATIVE_CONFIGURATION","value":"false"},{"name":"ROX_INTEGRATIONS_AS_CONFIG","value":"false"},{"name":"ROX_NETPOL_FIELDS","value":"true"},{"name":"ROX_NETWORK_DETECTION_BASELINE_SIMULATION","value":"true"},{"name":"ROX_NETWORK_GRAPH_PATTERNFLY","value":"true"},{"name":"ROX_NODE_SCANNING_CACHE_TIME","value":"3h36m"},{"name":"ROX_NODE_SCANNING_INITIAL_BACKOFF","value":"30s"},{"name":"ROX_NODE_SCANNING_MAX_BACKOFF","value":"5m"},{"name":"ROX_PROCESSES_LISTENING_ON_PORT","value":"false"},{"name":"ROX_QUAY_ROBOT_ACCOUNTS","value":"true"},{"name":"ROX_ROXCTL_NETPOL_GENERATE","value":"true"},{"name":"ROX_SOURCED_AUTOGENERATED_INTEGRATIONS","value":"false"},{"name":"ROX_SYSLOG_EXTRA_FIELDS","value":"true"},{"name":"ROX_SYSTEM_HEALTH_PF","value":"false"},{"name":"ROX_VULN_MGMT_WORKLOAD_CVES","value":"false"}],"image":"registry.redhat.io/advanced-cluster-security/rhacs-scanner-slim-rhel8:4.1.5","imagePullPolicy":"IfNotPresent","name":"node-inventory","ports":[{"containerPort":8444,"name":"grpc","protocol":"TCP"}],"volumeMounts":[{"mountPath":"/host","name":"host-root-ro","readOnly":true},{"mountPath":"/tmp/","name":"tmp-volume"},{"mountPath":"/cache","name":"cache-volume"}]}]}}}}'
Kubernetes and OpenShift Container Platform do not delete persistent volumes (PV) automatically. When you upgrade RHACS from earlier versions, the Central PV called stackrox-db
remains mounted. However, in RHACS 4.1, Central does not need the previously attached PV anymore.
The PV has data and persistent files used by earlier RHACS versions. You can use the PV to roll back to an earlier version before RHACS 4.1. Or, if you have a large RocksDB backup bundle for Central, you can use the PV to restore that data.
If you do not plan to roll back or restore from earlier RocksDB backups, you can remove the Central-attached persistent volume claim (PVC) to free up the storage.
After removing PVC, you cannot roll back Central to an earlier version before RHACS 4.1 or restore large RocksDB backups created with RocksDB. |
roxctl
CLIRemove the Central-attached persistent volume claim (PVC) stackrox-db
to free up storage space.
Run the following command:
$ oc get deployment central -n stackrox -o json | jq '(.spec.template.spec.volumes[] | select(.name=="stackrox-db"))={"name": "stackrox-db", "emptyDir": {}}' | oc apply -f -
It replaces the stackrox-db`
entry in the spec.template.spec.volumes
to a local emptyDir.
Run the following command:
$ oc -n stackrox describe pvc stackrox-db | grep -i 'Used By'
Used By: <none> (1)
1 | Wait until you see Used By: <none> . It might take a few minutes. |
You can roll back to a previous version of Central if the upgrade to a new version is unsuccessful.
You can roll back to a previous version of Central if upgrading Red Hat Advanced Cluster Security for Kubernetes fails.
Before you can perform a rollback, you must have free disk space available on your persistent storage. Red Hat Advanced Cluster Security for Kubernetes uses disk space to keep a copy of databases during the upgrade. If the disk space is not enough to store a copy and the upgrade fails, you might not be able to roll back to an earlier version.
Run the following command to roll back to a previous version when an upgrade fails (before the Central service starts):
$ oc -n stackrox rollout undo deploy/central (1)
1 | If you use Kubernetes, enter kubectl instead of oc . |
You can use forced rollback to roll back to an earlier version of Central (after the Central service starts).
Using forced rollback to switch back to a previous version might result in loss of data and functionality. |
Before you can perform a rollback, you must have free disk space available on your persistent storage. Red Hat Advanced Cluster Security for Kubernetes uses disk space to keep a copy of databases during the upgrade. If the disk space is not enough to store a copy and the upgrade fails, you will not be able to roll back to an earlier version.
Run the following commands to perform a forced rollback:
To forcefully rollback to the previously installed version:
$ oc -n stackrox rollout undo deploy/central (1)
1 | If you use Kubernetes, enter kubectl instead of oc . |
To forcefully rollback to a specific version:
Edit Central’s ConfigMap
:
$ oc -n stackrox edit configmap/central-config (1)
1 | If you use Kubernetes, enter kubectl instead of oc . |
Update the value of the maintenance.forceRollbackVersion
key:
data:
central-config.yaml: |
maintenance:
safeMode: false
compaction:
enabled: true
bucketFillFraction: .5
freeFractionThreshold: 0.75
forceRollbackVersion: <x.x.x.x> (1)
...
1 | Specify the version that you want to roll back to. |
Update the Central image version:
$ oc -n stackrox \ (1)
set image deploy/central central=registry.redhat.io/advanced-cluster-security/rhacs-main-rhel8:<x.x.x.x> (2)
1 | If you use Kubernetes, enter kubectl instead of oc . |
2 | Specify the version that you want to roll back to. It must be the same version that you specified for the maintenance.forceRollbackVersion key in the central-config config map. |
The updated Sensors and Collectors continue to report the latest data from each secured cluster.
The last time Sensor contacted Central is visible in the RHACS portal.
On the RHACS portal, navigate to Platform Configuration → System Health.
Check to ensure that Sensor Upgrade shows clusters up to date with Central.
For security reasons, Red Hat recommends that you revoke the API token that you have used to complete Central database backup.
After the upgrade, you must reload the RHACS portal page and re-accept the certificate to continue using the RHACS portal.
On the RHACS portal, navigate to Platform Configuration → Integrations.
Scroll down to the Authentication Tokens category, and click API Token.
Select the checkbox in front of the token name that you want to revoke.
Click Revoke.
On the confirmation dialog box, click Confirm.