-
1 vCPU is equivalent to 1 physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
In OpenShift Container Platform version 4.5, you can install a cluster on VMware vSphere infrastructure that you provision with customized network configuration options. By customizing your network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing MTU and VXLAN configurations.
You must set most of the network configuration parameters during installation,
and you can modify only kubeProxy
configuration parameters in a running
cluster.
The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the vSphere platform and the installation process of OpenShift Container Platform. Use the user-provisioned infrastructure installation instructions as a guide; you are free to create the required resources through other methods. |
Review details about the OpenShift Container Platform installation and update processes.
If you use a firewall, you must configure it to access Red Hat Insights.
In OpenShift Container Platform 4.5, you require access to the Internet to install your cluster. The Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, also requires Internet access. If your cluster is connected to the Internet, Telemetry runs automatically, and your cluster is registered to the Red Hat OpenShift Cluster Manager (OCM).
Once you confirm that your Red Hat OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually using OCM, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
You must have Internet access to:
Access the Red Hat OpenShift Cluster Manager page to download the installation program and perform subscription management. If the cluster has Internet access and you do not disable Telemetry, that service automatically entitles your cluster.
Access Quay.io to obtain the packages that are required to install your cluster.
Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry. |
You must install the OpenShift Container Platform cluster on a VMware vSphere version 6 instance that meets the requirements for the components that you use.
Component | Minimum supported versions | Description |
---|---|---|
Hypervisor |
vSphere 6.5 with HW version 13 |
This version is the minimum version that Red Hat Enterprise Linux CoreOS (RHCOS) supports. See the Red Hat Enterprise Linux 8 supported hypervisors list. |
Networking (NSX-T) |
vSphere 6.5U3 or vSphere 6.7U2 and later |
vSphere 6.5U3 or vSphere 6.7U2+ are required for OpenShift Container Platform. VMware’s NSX Container Plug-in (NCP) 3.0.2 is certified with OpenShift Container Platform 4.5 and NSX-T 3.x+. |
Storage with in-tree drivers |
vSphere 6.5 and later |
This plug-in creates vSphere storage by using the in-tree storage drivers for vSphere included in OpenShift Container Platform. |
If you use a vSphere version 6.5 instance, consider upgrading to 6.7U2 before you install OpenShift Container Platform.
You must ensure that the time on your ESXi hosts is synchronized before you install OpenShift Container Platform. See Edit Time Configuration for a Host in the VMware documentation. |
A limitation of using VPC is that the Storage Distributed Resource Scheduler (SDRS) is not supported. See vSphere Storage for Kubernetes FAQs in the VMware documentation. |
For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
The smallest OpenShift Container Platform clusters require the following hosts:
One temporary bootstrap machine
Three control plane, or master, machines
At least two compute machines, which are also known as worker machines.
The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster. |
To maintain high availability of your cluster, use separate physical hosts for these cluster machines. |
The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system.
Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
All virtual machines must reside in the same datastore and in the same folder as the installer. |
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot to fetch Ignition config files from the Machine Config Server.
During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files.
Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server.
If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
Each cluster machine must meet the following minimum requirements:
Machine | Operating System | vCPU [1] | Virtual RAM | Storage |
---|---|---|---|---|
Bootstrap |
RHCOS |
4 |
16 GB |
120 GB |
Control plane |
RHCOS |
4 |
16 GB |
120 GB |
Compute |
RHCOS or RHEL 7.8 - 7.9 |
2 |
8 GB |
120 GB |
1 vCPU is equivalent to 1 physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
Because your cluster has limited access to automatic machine management when you
use infrastructure that you provision, you must provide a mechanism for approving
cluster certificate signing requests (CSRs) after installation. The
kube-controller-manager
only approves the kubelet client CSRs. The
machine-approver
cannot guarantee the validity of a serving certificate
that is requested by using kubelet credentials because it cannot confirm that
the correct machine issued the request. You must determine and implement a
method of verifying the validity of the kubelet serving certificate requests
and approving them.
Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
Configure DHCP or set static IP addresses on each node.
Provision the required load balancers.
Configure the ports for your machines.
Configure DNS.
Ensure network connectivity.
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot
to fetch Ignition config from the machine config server.
During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster in order to establish a network connection, which allows them to download their Ignition config files.
It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
The Kubernetes API server, which runs on each master node after a successful cluster installation, must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
Protocol | Port | Description |
---|---|---|
ICMP |
N/A |
Network reachability tests |
TCP |
|
Metrics |
|
Host level services, including the node exporter on ports |
|
|
The default ports that Kubernetes reserves |
|
|
openshift-sdn |
|
UDP |
|
VXLAN and Geneve |
|
VXLAN and Geneve |
|
|
Host level services, including the node exporter on ports |
|
TCP/UDP |
|
Kubernetes node port |
Protocol | Port | Description |
---|---|---|
TCP |
|
Kubernetes API |
Protocol | Port | Description |
---|---|---|
TCP |
|
etcd server and peer ports |
The infrastructure that you provision for your cluster must meet the following network topology requirements.
OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat. |
Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
A stateless load balancing algorithm. The options vary based on the load balancer implementation.
Session persistence is not required for the API load balancer to function properly. |
Configure the following ports on both the front and back of the load balancers:
Port | Back-end machines (pool members) | Internal | External | Description |
---|---|---|---|---|
|
Bootstrap and control plane. You remove the bootstrap machine from the load
balancer after the bootstrap machine initializes the cluster control plane. You
must configure the |
X |
X |
Kubernetes API server |
|
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. |
X |
Machine config server |
The load balancer must be configured to take a maximum of 30 seconds from the
time the API server turns off the |
Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
Configure the following ports on both the front and back of the load balancers:
Port | Back-end machines (pool members) | Internal | External | Description |
---|---|---|---|---|
|
The machines that run the Ingress router pods, compute, or worker, by default. |
X |
X |
HTTPS traffic |
|
The machines that run the Ingress router pods, compute, or worker, by default. |
X |
X |
HTTP traffic |
If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption. |
A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes. |
When provisioning VMs for the cluster, the ethernet interfaces configured for each VM must use a MAC address from the VMware Organizationally Unique Identifier (OUI) allocation ranges:
00:05:69:00:00:00
to 00:05:69:FF:FF:FF
00:0c:29:00:00:00
to 00:0c:29:FF:FF:FF
00:1c:14:00:00:00
to 00:1c:14:FF:FF:FF
00:50:56:00:00:00
to 00:50:56:FF:FF:FF
If a MAC address outside the VMware OUI is used, the cluster installation will not succeed.
OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
The following DNS records are required for an OpenShift Container Platform cluster that uses
user-provisioned infrastructure. In each record, <cluster_name>
is the cluster
name and <base_domain>
is the cluster base domain that you specify in the
install-config.yaml
file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>.
.
Component | Record | Description | |
---|---|---|---|
Kubernetes API |
|
Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
|
|
Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster.
|
||
Routes |
|
Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
|
Bootstrap |
|
Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster. |
|
Master hosts |
|
Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the master nodes. These records must be resolvable by the nodes within the cluster. |
|
Worker hosts |
|
Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster. |
You can use the |
The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
$TTL 1W
@ IN SOA ns1.example.com. root (
2019070700 ; serial
3H ; refresh (3 hours)
30M ; retry (30 minutes)
2W ; expiry (2 weeks)
1W ) ; minimum (1 week)
IN NS ns1.example.com.
IN MX 10 smtp.example.com.
;
;
ns1 IN A 192.168.1.5
smtp IN A 192.168.1.5
;
helper IN A 192.168.1.5
helper.ocp4 IN A 192.168.1.5
;
; The api identifies the IP of your load balancer.
api.ocp4 IN A 192.168.1.5
api-int.ocp4 IN A 192.168.1.5
;
; The wildcard also identifies the load balancer.
*.apps.ocp4 IN A 192.168.1.5
;
; Create an entry for the bootstrap host.
bootstrap.ocp4 IN A 192.168.1.96
;
; Create entries for the master hosts.
master0.ocp4 IN A 192.168.1.97
master1.ocp4 IN A 192.168.1.98
master2.ocp4 IN A 192.168.1.99
;
; Create entries for the worker hosts.
worker0.ocp4 IN A 192.168.1.11
worker1.ocp4 IN A 192.168.1.7
;
;EOF
The following example BIND zone file shows sample PTR records for reverse name resolution.
$TTL 1W
@ IN SOA ns1.example.com. root (
2019070700 ; serial
3H ; refresh (3 hours)
30M ; retry (30 minutes)
2W ; expiry (2 weeks)
1W ) ; minimum (1 week)
IN NS ns1.example.com.
;
; The syntax is "last octet" and the host must have an FQDN
; with a trailing dot.
97 IN PTR master0.ocp4.example.com.
98 IN PTR master1.ocp4.example.com.
99 IN PTR master2.ocp4.example.com.
;
96 IN PTR bootstrap.ocp4.example.com.
;
5 IN PTR api.ocp4.example.com.
5 IN PTR api-int.ocp4.example.com.
;
11 IN PTR worker0.ocp4.example.com.
7 IN PTR worker1.ocp4.example.com.
;
;EOF
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging. |
You can use this key to SSH into the master nodes as the user core
. When you
deploy the cluster, the key is added to the core
user’s
~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs. |
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \
-f <path>/<file_name> (1)
1 | Specify the path and file name, such as ~/.ssh/id_rsa , of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory. |
Running this command generates an SSH key that does not require a password in the location that you specified.
If you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the |
Start the ssh-agent
process as a background task:
$ eval "$(ssh-agent -s)"
Agent pid 31874
If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the ssh-agent
:
$ ssh-add <path>/<file_name> (1)
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
1 | Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa |
When you install OpenShift Container Platform, provide the SSH public key to the installation program.
Before you install OpenShift Container Platform, download the installation file on a local computer.
You must install the cluster from a computer that uses Linux or macOS.
You need 500 MB of local disk space to download the installation program.
Access the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
The installation program creates several files on the computer that you use to install your cluster. You must keep both the installation program and the files that the installation program creates after you finish installing the cluster. |
Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. You must complete the OpenShift Container Platform uninstallation procedures outlined for your specific cloud provider to remove your cluster entirely. |
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf <installation_program>.tar.gz
From the
Pull Secret page on the Red Hat OpenShift Cluster Manager site, download your installation pull secret as a .txt
file. This pull secret allows you to authenticate with the services that
are provided by the included authorities, including Quay.io, which serves the
container images for OpenShift Container Platform components.
For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
Obtain the OpenShift Container Platform installation program and the access token for your cluster.
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version. |
Customize the following install-config.yaml
file template and save
it in the <installation_directory>
.
You must name this configuration file |
Back up the install-config.yaml
file so that you can use it to install
multiple clusters.
The |
install-config.yaml
file for VMware vSphereYou can customize the install-config.yaml
file to specify more details about
your OpenShift Container Platform cluster’s platform or modify the values of the required
parameters.
apiVersion: v1
baseDomain: example.com (1)
compute:
- hyperthreading: Enabled (2) (3)
name: worker
replicas: 0 (4)
controlPlane:
hyperthreading: Enabled (2) (3)
name: master
replicas: 3 (5)
metadata:
name: test (6)
platform:
vsphere:
vcenter: your.vcenter.server (7)
username: username (8)
password: password (9)
datacenter: datacenter (10)
defaultDatastore: datastore (11)
folder: "/<datacenter_name>/vm/<folder_name>/<subfolder_name>" (12)
fips: false (13)
pullSecret: '{"auths": ...}' (14)
sshKey: 'ssh-ed25519 AAAA...' (15)
1 | The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name. | ||
2 | The controlPlane section is a single mapping, but the compute section is a
sequence of mappings. To meet the requirements of the different data structures,
the first line of the compute section must begin with a hyphen, - , and the
first line of the controlPlane section must not. Although both sections
currently define a single machine pool, it is possible that future versions
of OpenShift Container Platform will support defining multiple compute pools during
installation. Only one control plane pool is used. |
||
3 | Whether to enable or disable simultaneous multithreading, or
hyperthreading . By default, simultaneous multithreading is enabled
to increase the performance of your machines' cores. You can disable it by
setting the parameter value to Disabled . If you disable simultaneous
multithreading in some cluster machines, you must disable it in all cluster
machines.
|
||
4 | You must set the value of the replicas parameter to 0 . This parameter
controls the number of workers that the cluster creates and manages for you,
which are functions that the cluster does not perform when you
use user-provisioned infrastructure. You must manually deploy worker
machines for the cluster to use before you finish installing OpenShift Container Platform. |
||
5 | The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy. | ||
6 | The cluster name that you specified in your DNS records. | ||
7 | The fully-qualified host name or IP address of the vCenter server. | ||
8 | The name of the user for accessing the server. This user must have at least the roles and privileges that are required for static or dynamic persistent volume provisioning in vSphere. | ||
9 | The password associated with the vSphere user. | ||
10 | The vSphere datacenter. | ||
11 | The default vSphere datastore to use. | ||
12 | Optional: For installer-provisioned infrastructure, the absolute path of an existing folder where the installation program creates the virtual machines, for example, /<datacenter_name>/vm/<folder_name>/<subfolder_name> . If you do not provide this value, the installation program creates a top-level folder in the datacenter virtual machine folder that is named with the infrastructure ID. If you are providing the infrastructure for the cluster, omit this parameter. |
||
13 | Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead. | ||
14 | The pull secret that you obtained from the Pull Secret page on the Red Hat OpenShift Cluster Manager site. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components. | ||
15 | The public portion of the default SSH key for the core user in
Red Hat Enterprise Linux CoreOS (RHCOS).
|
You can modify your cluster network configuration parameters in the
install-config.yaml
configuration file. The following table describes the
parameters.
You cannot modify these parameters in the |
Parameter | Description | Value |
---|---|---|
|
The default Container Network Interface (CNI) network provider plug-in to deploy. The |
The default value is |
|
A block of IP addresses from which pod IP addresses are allocated. The
|
An IP address allocation in CIDR format. The default value is |
|
The subnet prefix length to assign to each individual node. For example, if
|
A subnet prefix. The default value is |
|
A block of IP addresses for services. |
An IP address allocation in CIDR format. The default value is |
|
A block of IP addresses assigned to nodes created by the OpenShift Container Platform installation program while installing the cluster. The address block must not overlap with any other network block. Multiple CIDR ranges may be specified. |
An IP address allocation in CIDR format. The default value is |
You can modify the advanced network configuration parameters only before you
install the cluster. Advanced configuration customization lets you integrate
your cluster into your existing network environment by specifying an MTU or
VXLAN port, by allowing customization of
kube-proxy
settings, and by specifying a different mode
for the openshiftSDNConfig
parameter.
Modifying the OpenShift Container Platform manifest files created by the installation program is not supported. Applying a manifest file that you create, as in the following procedure, is supported. |
Create the install-config.yaml
file and complete any modifications to it.
Create the Ignition config files for your cluster.
Use the following command to create manifests:
$ ./openshift-install create manifests --dir=<installation_directory> (1)
1 | For <installation_directory> , specify the name of the directory that
contains the install-config.yaml file for your cluster. |
Create a file that is named cluster-network-03-config.yml
in the
<installation_directory>/manifests/
directory:
$ touch <installation_directory>/manifests/cluster-network-03-config.yml (1)
1 | For <installation_directory> , specify the directory name that contains the
manifests/ directory for your cluster. |
After creating the file, several network configuration files are in the
manifests/
directory, as shown:
$ ls <installation_directory>/manifests/cluster-network-*
cluster-network-01-crd.yml
cluster-network-02-config.yml
cluster-network-03-config.yml
Open the cluster-network-03-config.yml
file in an editor and enter a CR that
describes the Operator configuration you want:
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec: (1)
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
serviceNetwork:
- 172.30.0.0/16
defaultNetwork:
type: OpenShiftSDN
openshiftSDNConfig:
mode: NetworkPolicy
mtu: 1450
vxlanPort: 4789
1 | The parameters for the spec parameter are only an example. Specify your
configuration for the Cluster Network Operator in the CR. |
The CNO provides default values for the parameters in the CR, so you must specify only the parameters that you want to change.
Save the cluster-network-03-config.yml
file and quit the text editor.
Optional: Back up the manifests/cluster-network-03-config.yml
file. The
installation program deletes the manifests/
directory when creating the
cluster.
Remove the Kubernetes manifest files that define the control plane machines and compute machineSets:
$ rm -f openshift/99_openshift-cluster-api_master-machines-*.yaml openshift/99_openshift-cluster-api_worker-machineset-*.yaml
Because you create and manage these resources yourself, you do not have to initialize them.
You can preserve the MachineSet files to create compute machines by using the machine API, but you must update references to them to match your environment.
The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a CR object that is named cluster
. The CR specifies the parameters for the Network
API in the operator.openshift.io
API group.
You can specify the cluster network configuration for your OpenShift Container Platform cluster by setting the parameter values for the defaultNetwork
parameter in the CNO CR. The following CR displays the default configuration for the CNO and explains both the parameters you can configure and the valid parameter values:
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
clusterNetwork: (1)
- cidr: 10.128.0.0/14
hostPrefix: 23
serviceNetwork: (1)
- 172.30.0.0/16
defaultNetwork: (2)
...
kubeProxyConfig: (3)
iptablesSyncPeriod: 30s (4)
proxyArguments:
iptables-min-sync-period: (5)
- 0s
1 | Specified in the install-config.yaml file. |
||
2 | Configures the default Container Network Interface (CNI) network provider for the cluster network. | ||
3 | The parameters for this object specify the kube-proxy configuration. If you do not specify the parameter values, the Cluster Network Operator applies the displayed default parameter values. If you are using the OVN-Kubernetes default CNI network provider, the kube-proxy configuration has no effect. |
||
4 | The refresh period for iptables rules. The default value is 30s . Valid suffixes include s , m , and h and are described in the Go time package documentation.
|
||
5 | The minimum duration before refreshing iptables rules. This parameter ensures that the refresh does not happen too frequently. Valid suffixes include s , m , and h and are described in the Go time package. |
The following YAML object describes the configuration parameters for the OpenShift SDN default Container Network Interface (CNI) network provider.
defaultNetwork:
type: OpenShiftSDN (1)
openshiftSDNConfig: (2)
mode: NetworkPolicy (3)
mtu: 1450 (4)
vxlanPort: 4789 (5)
1 | Specified in the install-config.yaml file. |
2 | Specify only if you want to override part of the OpenShift SDN configuration. |
3 | Configures the network isolation mode for OpenShift SDN. The allowed values
are Multitenant , Subnet , or NetworkPolicy . The default value is
NetworkPolicy . |
4 | The maximum transmission unit (MTU) for the VXLAN overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.
If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes. If your cluster requires different MTU values for different nodes, you must set this value to |
5 | The port to use for all VXLAN packets. The default value is 4789 . If you
are running in a virtualized environment with existing nodes that are part of
another VXLAN network, then you might be required to change this. For example,
when running an OpenShift SDN overlay on top of VMware NSX-T, you must select an
alternate port for VXLAN, since both SDNs use the same default VXLAN port
number.
On Amazon Web Services (AWS), you can select an alternate port for the VXLAN
between port |
A complete CR object for the CNO is displayed in the following example:
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
serviceNetwork:
- 172.30.0.0/16
defaultNetwork:
type: OpenShiftSDN
openshiftSDNConfig:
mode: NetworkPolicy
mtu: 1450
vxlanPort: 4789
kubeProxyConfig:
iptablesSyncPeriod: 30s
proxyArguments:
iptables-min-sync-period:
- 0s
Because you must manually start the cluster machines, you must generate the Ignition config files that the cluster needs to make its machines.
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending |
Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Obtain the Ignition config files:
$ ./openshift-install create ignition-configs --dir=<installation_directory> (1)
1 | For <installation_directory> , specify the directory name to store the
files that the installation program creates. |
If you created an |
The following files are generated in the directory:
. ├── auth │ ├── kubeadmin-password │ └── kubeconfig ├── bootstrap.ign ├── master.ign ├── metadata.json └── worker.ign
Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Generate the Ignition config files for your cluster.
Install the jq
package.
To extract and view the infrastructure name from the Ignition config file metadata, run the following command:
$ jq -r .infraID <installation_directory>/metadata.json (1)
1 | For <installation_directory> , specify the path to the directory that you stored the
installation files in. |
openshift-vw9j6 (1)
1 | The output of this command is your cluster name and a random string. |
Before you install a cluster that contains user-provisioned infrastructure on VMware vSphere, you must create RHCOS machines on vSphere hosts for it to use.
Obtain the Ignition config files for your cluster.
Have access to an HTTP server that you can access from your computer and that the machines that you create can access.
Create a vSphere cluster.
Upload the bootstrap Ignition config file, which is named
<installation_directory>/bootstrap.ign
, that the installation program created
to your HTTP server. Note the URL of this file.
You must host the bootstrap Ignition config file because it is too large to fit in a vApp property.
Save the following secondary Ignition config file for your bootstrap node to
your computer as <installation_directory>/append-bootstrap.ign
.
{ "ignition": { "config": { "append": [ { "source": "<bootstrap_ignition_config_url>", (1) "verification": {} } ] }, "timeouts": {}, "version": "2.2.0" }, "networkd": {}, "passwd": {}, "storage": {}, "systemd": {} }
1 | Specify the URL of the bootstrap Ignition config file that you hosted. |
When you create the virtual machine (VM) for the bootstrap machine, you use this Ignition config file.
Convert the master, worker, and secondary bootstrap Ignition config files to base64 encoding.
For example, if you use a Linux operating system, you can use the base64
command to encode the files.
$ base64 -w0 <installation_directory>/master.ign > <installation_directory>/master.64
$ base64 -w0 <installation_directory>/worker.ign > <installation_directory>/worker.64
$ base64 -w0 <installation_directory>/append-bootstrap.ign > <installation_directory>/append-bootstrap.64
If you plan to add more compute machines to your cluster after you finish installation, do not delete these files. |
Obtain the RHCOS OVA image. Images are available from the RHCOS image mirror page.
The RHCOS images might not change with every release of OpenShift Container Platform. You must download an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available. |
The filename contains the OpenShift Container Platform version number in the format rhcos-vmware.<architecture>.ova
.
In the vSphere Client, create a folder in your datacenter to store your VMs.
Click the VMs and Templates view.
Right-click the name of your datacenter.
Click New Folder → New VM and Template Folder.
In the window that is displayed, enter the folder name. If you did not specify an existing folder in the install-config.yaml
file, create a folder with the same name as the infrastructure ID.
In the vSphere Client, create a template for the OVA image and then clone the template as needed.
In the following steps, you create a template and then clone the template for all of your cluster machines. You then provide the location for the Ignition config file for that cloned machine type when you provision the VMs. |
From the Hosts and Clusters tab, right-click your cluster name and select Deploy OVF Template.
On the Select an OVF tab, specify the name of the RHCOS OVA file that you downloaded.
On the Select a name and folder tab, set a Virtual machine name for your template, such as Template-RHCOS
. Click the name of your vSphere cluster and select the folder you created in the previous step.
On the Select a compute resource tab, click the name of your vSphere cluster.
On the Select storage tab, configure the storage options for your VM.
Select Thin Provision or Thick Provision, based on your storage preferences.
Select the datastore that you specified in your install-config.yaml
file.
On the Select network tab, specify the network that you configured for the cluster, if available.
When creating the OVF template, do not specify values on the Customize template tab or configure the template any further.
Do not start the original VM template. The VM template must remain off and must be cloned for new RHCOS machines. Starting the VM template configures the VM template as a VM on the platform, which prevents it from being used as a template that machine sets can apply configurations to. |
After the template deploys, deploy a VM for a machine in the cluster.
Right-click the template’s name and click Clone → Clone to Virtual Machine.
On the Select a name and folder tab, specify a name for the VM. You might
include the machine type in the name, such as control-plane-0
or compute-1
.
On the Select a name and folder tab, select the name of the folder that you created for the cluster.
On the Select a compute resource tab, select the name of a host in your datacenter.
Optional: On the Select storage tab, customize the storage options.
On the Select clone options, select Customize this virtual machine’s hardware.
On the Customize hardware tab, click VM Options → Advanced.
Optional: In the event of cluster performance issues, from the Latency Sensitivity list, select High.
Click Edit Configuration, and on the Configuration Parameters window, click Add Configuration Params. Define the following parameter names and values:
guestinfo.ignition.config.data
: Paste the contents of the base64-encoded
Ignition config file for this machine type.
guestinfo.ignition.config.data.encoding
: Specify base64
.
disk.EnableUUID
: Specify TRUE
.
Alternatively, prior to powering on the virtual machine add via vApp properties:
Navigate to a virtual machine from the vCenter Server inventory.
On the Configure tab, expand Settings and select vApp options.
Scroll down and under Properties apply the configurations from above.
In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type.
Complete the configuration and power on the VM.
Create the rest of the machines for your cluster by following the preceding steps for each machine.
You must create the bootstrap and control plane machines at this time. Because some pods are deployed on compute machines by default, also create at least two compute machines before you install the cluster. |
You can create more compute machines for your cluster that uses user-provisioned infrastructure on VMware vSphere.
Obtain the base64-encoded Ignition file for your compute machines.
You have access to the vSphere template that you created for your cluster.
After the template deploys, deploy a VM for a machine in the cluster.
Right-click the template’s name and click Clone → Clone to Virtual Machine.
On the Select a name and folder tab, specify a name for the VM. You might include the machine type in the name, such as compute-1
.
On the Select a name and folder tab, select the name of the folder that you created for the cluster.
On the Select a compute resource tab, select the name of a host in your datacenter.
Optional: On the Select storage tab, customize the storage options.
On the Select clone options, select Customize this virtual machine’s hardware.
On the Customize hardware tab, click VM Options → Advanced.
From the Latency Sensitivity list, select High.
Click Edit Configuration, and on the Configuration Parameters window, click Add Configuration Params. Define the following parameter names and values:
guestinfo.ignition.config.data
: Paste the contents of the base64-encoded compute Ignition config file for this machine type.
guestinfo.ignition.config.data.encoding
: Specify base64
.
disk.EnableUUID
: Specify TRUE
.
In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type. Also, make sure to select the correct network under Add network adapter if there are multiple networks available.
Complete the configuration and power on the VM.
Continue to create more compute machines for your cluster.
You can install the OpenShift CLI (oc
) in order to interact with OpenShift Container Platform from a
command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of |
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
Select your infrastructure provider, and, if applicable, your installation type.
In the Command line interface section, select Linux from the drop-down menu and click Download command-line tools.
Unpack the archive:
$ tar xvzf <file>
Place the oc
binary in a directory that is on your PATH
.
To check your PATH
, execute the following command:
$ echo $PATH
After you install the CLI, it is available using the oc
command:
$ oc <command>
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
Select your infrastructure provider, and, if applicable, your installation type.
In the Command line interface section, select Windows from the drop-down menu and click Download command-line tools.
Unzip the archive with a ZIP program.
Move the oc
binary to a directory that is on your PATH
.
To check your PATH
, open the command prompt and execute the following command:
C:\> path
After you install the CLI, it is available using the oc
command:
C:\> oc <command>
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
Select your infrastructure provider, and, if applicable, your installation type.
In the Command line interface section, select MacOS from the drop-down menu and click Download command-line tools.
Unpack and unzip the archive.
Move the oc
binary to a directory on your PATH.
To check your PATH
, open a terminal and execute the following command:
$ echo $PATH
After you install the CLI, it is available using the oc
command:
$ oc <command>
To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
Create the required infrastructure for the cluster.
You obtained the installation program and generated the Ignition config files for your cluster.
You used the Ignition config files to create RHCOS machines for your cluster.
Your machines have direct Internet access or have an HTTP or HTTPS proxy available.
Monitor the bootstrap process:
$ ./openshift-install --dir=<installation_directory> wait-for bootstrap-complete \ (1)
--log-level=info (2)
1 | For <installation_directory> , specify the path to the directory that you stored the installation files in. |
2 | To view different installation details, specify warn , debug , or error instead of info . |
INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
INFO API v1.18.3 up
INFO Waiting up to 30m0s for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources
The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
After bootstrap process is complete, remove the bootstrap machine from the load balancer.
You must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself. |
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file.
The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
The file is specific to a cluster and is created during OpenShift Container Platform installation.
Deploy an OpenShift Container Platform cluster.
Install the oc
CLI.
Export the kubeadmin
credentials:
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
1 | For <installation_directory> , specify the path to the directory that you stored
the installation files in. |
Verify you can run oc
commands successfully using the exported configuration:
$ oc whoami
system:admin
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
You added machines to your cluster.
Confirm that the cluster recognizes the machines:
$ oc get nodes
NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.18.3
master-1 Ready master 63m v1.18.3
master-2 Ready master 64m v1.18.3
worker-0 NotReady worker 76s v1.18.3
worker-1 NotReady worker 70s v1.18.3
The output lists all of the machines that you created.
Review the pending CSRs and ensure that you see the client requests with the Pending
or Approved
status for each machine that you added to the cluster:
$ oc get csr
NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending
status, approve the CSRs for your cluster machines:
Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the |
To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> (1)
1 | <csr_name> is the name of a CSR from the list of current CSRs. |
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
$ oc get csr
NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...
If the remaining CSRs are not approved, and are in the Pending
status, approve the CSRs for your cluster machines:
To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> (1)
1 | <csr_name> is the name of a CSR from the list of current CSRs. |
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
After all client and server CSRs have been approved, the machines have the Ready
status. Verify this by running the following command:
$ oc get nodes
NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0
It can take a few minutes after approval of the server CSRs for the machines to transition to the |
For more information on CSRs, see Certificate Signing Requests.
After the control plane initializes, you must immediately configure some Operators so that they all become available.
Your control plane has initialized.
Watch the cluster components come online:
$ watch -n5 oc get clusteroperators
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.5.4 True False False 69s
cloud-credential 4.5.4 True False False 12m
cluster-autoscaler 4.5.4 True False False 11m
console 4.5.4 True False False 46s
dns 4.5.4 True False False 11m
image-registry 4.5.4 True False False 5m26s
ingress 4.5.4 True False False 5m36s
kube-apiserver 4.5.4 True False False 8m53s
kube-controller-manager 4.5.4 True False False 7m24s
kube-scheduler 4.5.4 True False False 12m
machine-api 4.5.4 True False False 12m
machine-config 4.5.4 True False False 7m36s
marketplace 4.5.4 True False False 7m54m
monitoring 4.5.4 True False False 7h54s
network 4.5.4 True False False 5m9s
node-tuning 4.5.4 True False False 11m
openshift-apiserver 4.5.4 True False False 11m
openshift-controller-manager 4.5.4 True False False 5m943s
openshift-samples 4.5.4 True False False 3m55s
operator-lifecycle-manager 4.5.4 True False False 11m
operator-lifecycle-manager-catalog 4.5.4 True False False 11m
service-ca 4.5.4 True False False 11m
service-catalog-apiserver 4.5.4 True False False 5m26s
service-catalog-controller-manager 4.5.4 True False False 5m25s
storage 4.5.4 True False False 5m30s
Configure the Operators that are not available.
On platforms that do not provide shareable object storage, the OpenShift Image
Registry Operator bootstraps itself as Removed
. This allows
openshift-installer
to complete installations on these platform types.
After installation, you must edit the Image Registry Operator configuration to
switch the managementState
from Removed
to Managed
.
The Prometheus console provides an "Image Registry has been removed. |
The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate
rollout strategy during upgrades.
To allow the image registry to use block storage types such as vSphere Virtual Machine Disk (VMDK) during upgrades as a cluster administrator, you can use the Recreate
rollout strategy.
Block storage volumes are supported but not recommended for use with image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica. |
To set the image registry storage as a block storage type, patch the registry so that it uses the Recreate
rollout strategy and runs with only 1
replica:
$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'
Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
Create a pvc.yaml
file with the following contents to define a VMware vSphere PersistentVolumeClaim
object:
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: image-registry-storage (1)
spec:
accessModes:
- ReadWriteOnce (2)
resources:
requests:
storage: 100Gi (3)
1 | A unique name that represents the PersistentVolumeClaim object. |
2 | The access mode of the PersistentVolumeClaim. With ReadWriteOnce , the volume can be mounted with read and write permissions by a single node. |
3 | The size of the PersistentVolumeClaim. |
Create the PersistentVolumeClaim
object from the file:
$ oc create -f pvc.yaml -n openshift-image-registry
Edit the registry configuration so that it references the correct PVC:
$ oc edit config.imageregistry.operator.openshift.io -o yaml
storage:
pvc:
claim: (1)
1 | Creating a custom PVC allows you to leave the claim field blank for the default automatic creation of an image-registry-storage PVC. |
For instructions about configuring registry storage so that it references the correct PVC, see Configuring the registry for vSphere.
After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
Your control plane has initialized.
You have completed the initial Operator configuration.
Confirm that all the cluster components are online with the following command:
$ watch -n5 oc get clusteroperators
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.5.4 True False False 7m56s
cloud-credential 4.5.4 True False False 31m
cluster-autoscaler 4.5.4 True False False 16m
console 4.5.4 True False False 10m
csi-snapshot-controller 4.5.4 True False False 16m
dns 4.5.4 True False False 22m
etcd 4.5.4 False False False 25s
image-registry 4.5.4 True False False 16m
ingress 4.5.4 True False False 16m
insights 4.5.4 True False False 17m
kube-apiserver 4.5.4 True False False 19m
kube-controller-manager 4.5.4 True False False 20m
kube-scheduler 4.5.4 True False False 20m
kube-storage-version-migrator 4.5.4 True False False 16m
machine-api 4.5.4 True False False 22m
machine-config 4.5.4 True False False 22m
marketplace 4.5.4 True False False 16m
monitoring 4.5.4 True False False 10m
network 4.5.4 True False False 23m
node-tuning 4.5.4 True False False 23m
openshift-apiserver 4.5.4 True False False 17m
openshift-controller-manager 4.5.4 True False False 15m
openshift-samples 4.5.4 True False False 16m
operator-lifecycle-manager 4.5.4 True False False 22m
operator-lifecycle-manager-catalog 4.5.4 True False False 22m
operator-lifecycle-manager-packageserver 4.5.4 True False False 18m
service-ca 4.5.4 True False False 23m
service-catalog-apiserver 4.5.4 True False False 23m
service-catalog-controller-manager 4.5.4 True False False 23m
storage 4.5.4 True False False 17m
Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
$ ./openshift-install --dir=<installation_directory> wait-for install-complete (1)
1 | For <installation_directory> , specify the path to the directory that you
stored the installation files in. |
INFO Waiting up to 30m0s for the cluster to initialize...
The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending |
Confirm that the Kubernetes API server is communicating with the pods.
To view a list of all pods, use the following command:
$ oc get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m
openshift-apiserver apiserver-67b9g 1/1 Running 0 3m
openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m
openshift-apiserver apiserver-z25h4 1/1 Running 0 2m
openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m
...
View the logs for a pod that is listed in the output of the previous command by using the following command:
$ oc logs <pod_name> -n <namespace> (1)
1 | Specify the pod name and namespace, as shown in the output of the previous command. |
If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
You can add extra compute machines after the cluster installation is completed by following Adding compute machines to vSphere.
OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach and detach the volume on any node in the cluster. As a consequence, it is not possible to back up volumes that use snapshots, or to restore volumes from snapshots. See Snapshot Limitations for more information.
To create a backup of persistent volumes:
Stop the application that is using the persistent volume.
Clone the persistent volume.
Restart the application.
Create a backup of the cloned volume.
Delete the cloned volume.
If necessary, you can opt out of remote health reporting.