The authentication layer identifies the user associated with requests to the OpenShift Container Platform API. The authorization layer then uses information about the requesting user to determine if the request should be allowed.

As an administrator, you can configure authentication using a master configuration file.

Users and Groups

A user in OpenShift Container Platform is an entity that can make requests to the OpenShift Container Platform API. Typically, this represents the account of a developer or administrator that is interacting with OpenShift Container Platform.

A user can be assigned to one or more groups, each of which represent a certain set of users. Groups are useful when managing authorization policies to grant permissions to multiple users at once, for example allowing access to objects within a project, versus granting them to users individually.

In addition to explicitly defined groups, there are also system groups, or virtual groups, that are automatically provisioned by OpenShift. These can be seen when viewing cluster bindings.

In the default set of virtual groups, note the following in particular:

Virtual Group Description


Automatically associated with all authenticated users.


Automatically associated with all users authenticated with an OAuth access token.


Automatically associated with all unauthenticated users.

API Authentication

Requests to the OpenShift Container Platform API are authenticated using the following methods:

OAuth Access Tokens
  • Obtained from the OpenShift Container Platform OAuth server using the <master>/oauth/authorize and <master>/oauth/token endpoints.

  • Sent as an Authorization: Bearer…​ header or an access_token=…​ query parameter

X.509 Client Certificates
  • Requires a HTTPS connection to the API server.

  • Verified by the API server against a trusted certificate authority bundle.

  • The API server creates and distributes certificates to controllers to authenticate themselves.

Any request with an invalid access token or an invalid certificate is rejected by the authentication layer with a 401 error.

If no access token or certificate is presented, the authentication layer assigns the system:anonymous virtual user and the system:unauthenticated virtual group to the request. This allows the authorization layer to determine which requests, if any, an anonymous user is allowed to make.


A request to the OpenShift Container Platform API may include an Impersonate-User header, which indicates that the requester wants to have the request handled as though it came from the specified user. This can be done on the command line by passing the --as=username flag.

Before User A is allowed to impersonate User B, User A is first authenticated. Then, an authorization check occurs to ensure that User A is allowed to impersonate the user named User B. If User A is requesting to impersonate a service account (system:serviceaccount:namespace:name), OpenShift Container Platform checks to ensure that User A can impersonate the serviceaccount named name in namespace. If the check fails, the request fails with a 403 (Forbidden) error code.

By default, project administrators and editors are allowed to impersonate service accounts in their namespace. The sudoers role allows a user to impersonate system:admin, which in turn has cluster administrator permissions. This grants some protection against typos (but not security) for someone administering the cluster. For example, oc delete nodes --all would be forbidden, but oc delete nodes --all --as=system:admin would be allowed. You can add a user to that group using oadm policy add-cluster-role-to-user sudoer <username>.


The OpenShift Container Platform master includes a built-in OAuth server. Users obtain OAuth access tokens to authenticate themselves to the API.

When a person requests a new OAuth token, the OAuth server uses the configured identity provider to determine the identity of the person making the request.

It then determines what user that identity maps to, creates an access token for that user, and returns the token for use.

OAuth Clients

Every request for an OAuth token must specify the OAuth client that will receive and use the token. The following OAuth clients are automatically created when starting the OpenShift Container Platform API:

OAuth Client Usage


Requests tokens for the web console.


Requests tokens at <master>/oauth/token/request with a user-agent that can handle interactive logins.


Requests tokens with a user-agent that can handle WWW-Authenticate challenges.

To register additional clients:

$ oc create -f <(echo '
kind: OAuthClient
apiVersion: v1
 name: demo (1)
secret: "..." (2)
 - "http://www.example.com/" (3)
grantMethod: prompt (4)
1 The name of the OAuth client is used as the client_id parameter when making requests to <master>/oauth/authorize and <master>/oauth/token.
2 The secret is used as the client_secret parameter when making requests to <master>/oauth/token.
3 The redirect_uri parameter specified in requests to <master>/oauth/authorize and <master>/oauth/token must be equal to (or prefixed by) one of the URIs in redirectURIs.
4 The grantMethod is used to determine what action to take when this client requests tokens and has not yet been granted access by the user. Uses the same values seen in Grant Options.

Service Accounts as OAuth Clients

A service account can be used as a constrained form of OAuth client. Service accounts can only request a subset of scopes that allow access to some basic user information and role-based power inside of the service account’s own namespace:

  • user:info

  • user:check-access

  • role:<any_role>:<serviceaccount_namespace>

  • role:<any_role>:<serviceaccount_namespace>:!

When using a service account as an OAuth client:

  • client_id is system:serviceaccount:<serviceaccount_namespace>:<serviceaccount_name>.

  • client_secret can be any of the API tokens for that service account. For example:

    $ oc sa get-token <serviceaccount_name>
  • To get WWW-Authenticate challenges, set an serviceaccounts.openshift.io/oauth-want-challenges annotation on the service account to true.

  • redirect_uri must match an annotation on the service account. Redirect URIs for Service Accounts as OAuth Clients provides more information.

Redirect URIs for Service Accounts as OAuth Clients

Annotation keys must have the prefix serviceaccounts.openshift.io/oauth-redirecturi. or serviceaccounts.openshift.io/oauth-redirectreference. such as:


In its simplest form, the annotation can be used to directly specify valid redirect URIs. For example:

"serviceaccounts.openshift.io/oauth-redirecturi.first":  "https://example.com"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "https://other.com"

The first and second postfixes in the above example are used to separate the two valid redirect URIs.

In more complex configurations, static redirect URIs may not be enough. For example, perhaps you want all ingresses for a route to be considered valid. This is where dynamic redirect URIs via the serviceaccounts.openshift.io/oauth-redirectreference. prefix come into play.

For example:

"serviceaccounts.openshift.io/oauth-redirectreference.first": "{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

Since the value for this annotation contains serialized JSON data, it is easier to see in an expanded format:

  "kind": "OAuthRedirectReference",
  "apiVersion": "v1",
  "reference": {
    "kind": "Route",
    "name": "jenkins"

Now you can see that an OAuthRedirectReference allows us to reference the route named jenkins. Thus, all ingresses for that route will now be considered valid. The full specification for an OAuthRedirectReference is:

  "kind": "OAuthRedirectReference",
  "apiVersion": "v1",
  "reference": {
    "kind": ..., (1)
    "name": ..., (2)
    "group": ... (3)
1 kind refers to the type of the object being referenced. Currently, only route is supported.
2 name refers to the name of the object. The object must be in the same namespace as the service account.
3 group refers to the group of the object. Leave this blank, as the group for a route is the empty string.

Both annotation prefixes can be combined to override the data provided by the reference object. For example:

"serviceaccounts.openshift.io/oauth-redirecturi.first":  "custompath"
"serviceaccounts.openshift.io/oauth-redirectreference.first": "{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

The first postfix is used to tie the annotations together. Assuming that the jenkins route had an ingress of https://example.com, now https://example.com/custompath is considered valid, but https://example.com is not. The format for partially supplying override data is as follows:

Type Syntax









Specifying a host name override will replace the host name data from the referenced object, which is not likely to be desired behavior.

Any combination of the above syntax can be combined using the following format:


The same object can be referenced more than once for more flexibility:

"serviceaccounts.openshift.io/oauth-redirecturi.first":  "custompath"
"serviceaccounts.openshift.io/oauth-redirectreference.first": "{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":{\"kind\":\"Route\",\"name\":\"jenkins\"}}"
"serviceaccounts.openshift.io/oauth-redirecturi.second":  "//:8000"
"serviceaccounts.openshift.io/oauth-redirectreference.second": "{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

Assuming that the route named jenkins has an ingress of https://example.com, then both https://example.com:8000 and https://example.com/custompath are considered valid.

Static and dynamic annotations can be used at the same time to achieve the desired behavior:

"serviceaccounts.openshift.io/oauth-redirectreference.first": "{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":{\"kind\":\"Route\",\"name\":\"jenkins\"}}"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "https://other.com"


All requests for OAuth tokens involve a request to <master>/oauth/authorize. Most authentication integrations place an authenticating proxy in front of this endpoint, or configure OpenShift Container Platform to validate credentials against a backing identity provider. Requests to <master>/oauth/authorize can come from user-agents that cannot display interactive login pages, such as the CLI. Therefore, OpenShift Container Platform supports authenticating using a WWW-Authenticate challenge in addition to interactive login flows.

If an authenticating proxy is placed in front of the <master>/oauth/authorize endpoint, it should send unauthenticated, non-browser user-agents WWW-Authenticate challenges, rather than displaying an interactive login page or redirecting to an interactive login flow.

To prevent cross-site request forgery (CSRF) attacks against browser clients, Basic authentication challenges should only be sent if a X-CSRF-Token header is present on the request. Clients that expect to receive Basic WWW-Authenticate challenges should set this header to a non-empty value.

If the authenticating proxy cannot support WWW-Authenticate challenges, or if OpenShift Container Platform is configured to use an identity provider that does not support WWW-Authenticate challenges, users can visit <master>/oauth/token/request using a browser to obtain an access token manually.

OAuth Server Metadata

Applications running in OpenShift Container Platform may need to discover information about the built-in OAuth server. For example, they may need to discover what the address of the <master> server is without manual configuration. To aid in this, OpenShift Container Platform implements the IETF OAuth 2.0 Authorization Server Metadata draft specification.

Thus, any application running inside the cluster can issue a GET request to https://openshift.default.svc/.well-known/oauth-authorization-server to fetch the following information:

  "issuer": "https://<master>", (1)
  "authorization_endpoint": "https://<master>/oauth/authorize", (2)
  "token_endpoint": "https://<master>/oauth/token", (3)
  "scopes_supported": [ (4)
  "response_types_supported": [ (5)
  "grant_types_supported": [ (6)
  "code_challenge_methods_supported": [ (7)
1 The authorization server’s issuer identifier, which is a URL that uses the https scheme and has no query or fragment components. This is the location where .well-known RFC 5785 resources containing information about the authorization server are published.
2 URL of the authorization server’s authorization endpoint. See RFC 6749.
3 URL of the authorization server’s token endpoint. See RFC 6749.
4 JSON array containing a list of the OAuth 2.0 RFC 6749 scope values that this authorization server supports. Note that not all supported scope values are advertised.
5 JSON array containing a list of the OAuth 2.0 response_type values that this authorization server supports. The array values used are the same as those used with the response_types parameter defined by "OAuth 2.0 Dynamic Client Registration Protocol" in RFC 7591.
6 JSON array containing a list of the OAuth 2.0 grant type values that this authorization server supports. The array values used are the same as those used with the grant_types parameter defined by OAuth 2.0 Dynamic Client Registration Protocol in RFC 7591.
7 JSON array containing a list of PKCE RFC 7636 code challenge methods supported by this authorization server. Code challenge method values are used in the code_challenge_method parameter defined in Section 4.3 of RFC 7636. The valid code challenge method values are those registered in the IANA PKCE Code Challenge Methods registry. See IANA OAuth Parameters.

Obtaining OAuth Tokens

The OAuth server supports standard authorization code grant and the implicit grant OAuth authorization flows.

When requesting an OAuth token using the implicit grant flow (response_type=token) with a client_id configured to request WWW-Authenticate challenges (like openshift-challenging-client), these are the possible server responses from /oauth/authorize, and how they should be handled:

Status Content Client response


Location header containing an access_token parameter in the URL fragment (RFC 4.2.2)

Use the access_token value as the OAuth token


Location header containing an error query parameter (RFC

Fail, optionally surfacing the error (and optional error_description) query values to the user


Other Location header

Follow the redirect, and process the result using these rules


WWW-Authenticate header present

Respond to challenge if type is recognized (e.g. Basic, Negotiate, etc), resubmit request, and process the result using these rules


WWW-Authenticate header missing

No challenge authentication is possible. Fail and show response body (which might contain links or details on alternate methods to obtain an OAuth token)



Fail, optionally surfacing response body to the user