$ helm repo add rhacs https://mirror.openshift.com/pub/rhacs/charts/
You can install RHACS on your secured clusters for platforms such as Amazon Elastic Kubernetes Service (Amazon EKS), Google Kubernetes Engine (Google GKE), and Microsoft Azure Kubernetes Service (Microsoft AKS).
You can install RHACS on secured clusters by using Helm charts with no customization, using the default values, or with customizations of configuration parameters.
Add the RHACS charts repository.
$ helm repo add rhacs https://mirror.openshift.com/pub/rhacs/charts/
The Helm repository for Red Hat Advanced Cluster Security for Kubernetes includes Helm charts for installing different components, including:
Central services Helm chart (central-services
) for installing the centralized components (Central and Scanner).
You deploy centralized components only once and you can monitor multiple separate clusters by using the same installation. |
Secured Cluster Services Helm chart (secured-cluster-services
) for installing the per-cluster and per-node components (Sensor, Admission Controller, Collector, and Scanner-slim).
Deploy the per-cluster components into each cluster that you want to monitor and deploy the per-node components in all nodes that you want to monitor. |
Run the following command to verify the added chart repository:
$ helm search repo -l rhacs/
Use the following instructions to install the secured-cluster-services
Helm chart to deploy the per-cluster and per-node components (Sensor, Admission controller, Collector, and Scanner-slim).
You must have generated an RHACS init bundle for your cluster.
You must have access to the Red Hat Container Registry and a pull secret for authentication. For information about downloading images from registry.redhat.io
, see Red Hat Container Registry Authentication.
You must have the address that you are exposing the Central service on.
Run the following command on your Kubernetes based clusters:
$ helm install -n stackrox --create-namespace \
stackrox-secured-cluster-services rhacs/secured-cluster-services \
-f <path_to_cluster_init_bundle.yaml> \(1)
-f <path_to_pull_secret.yaml> \(2)
--set clusterName=<name_of_the_secured_cluster> \
--set centralEndpoint=<endpoint_of_central_service> (3)
--set imagePullSecrets.username=<your redhat.com username> \(4)
--set imagePullSecrets.password=<your redhat.com password>(5)
1 | Use the -f option to specify the path for the init bundle. |
2 | Use the -f option to specify the path for the pull secret for Red Hat Container Registry authentication. |
3 | Specify the address and port number for Central. For example, acs.domain.com:443 . |
4 | Include the user name for your pull secret for Red Hat Container Registry authentication. |
5 | Include the password for your pull secret for Red Hat Container Registry authentication. |
This section describes Helm chart configuration parameters that you can use with the helm install
and helm upgrade
commands.
You can specify these parameters by using the --set
option or by creating YAML configuration files.
Create the following files for configuring the Helm chart for installing Red Hat Advanced Cluster Security for Kubernetes:
Public configuration file values-public.yaml
: Use this file to save all non-sensitive configuration options.
Private configuration file values-private.yaml
: Use this file to save all sensitive configuration options. Ensure that you store this file securely.
While using the |
Parameter | Description | ||
---|---|---|---|
|
Name of your cluster. |
||
|
Address of the Central endpoint. If you are using a non-gRPC capable load balancer, use the WebSocket protocol by prefixing the endpoint address with |
||
|
Address of the Sensor endpoint including port number. |
||
|
Image pull policy for the Sensor container. |
||
|
The internal service-to-service TLS certificate that Sensor uses. |
||
|
The internal service-to-service TLS certificate key that Sensor uses. |
||
|
The memory request for the Sensor container. Use this parameter to override the default value. |
||
|
The CPU request for the Sensor container. Use this parameter to override the default value. |
||
|
The memory limit for the Sensor container. Use this parameter to override the default value. |
||
|
The CPU limit for the Sensor container. Use this parameter to override the default value. |
||
|
Specify a node selector label as |
||
|
If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Sensor. This parameter is mainly used for infrastructure nodes. |
||
|
The name of the |
||
|
The name of the Collector image. |
||
|
The address of the registry you are using for the main image. |
||
|
The address of the registry you are using for the Collector image. |
||
|
The address of the registry you are using for the Scanner image. |
||
|
The address of the registry you are using for the Scanner DB image. |
||
|
The address of the registry you are using for the Scanner V4 image. |
||
|
The address of the registry you are using for the Scanner V4 DB image. |
||
|
Image pull policy for |
||
|
Image pull policy for the Collector images. |
||
|
Tag of |
||
|
Tag of |
||
|
Either |
||
|
Image pull policy for the Collector container. |
||
|
Image pull policy for the Compliance container. |
||
|
If you specify |
||
|
The memory request for the Collector container. Use this parameter to override the default value. |
||
|
The CPU request for the Collector container. Use this parameter to override the default value. |
||
|
The memory limit for the Collector container. Use this parameter to override the default value. |
||
|
The CPU limit for the Collector container. Use this parameter to override the default value. |
||
|
The memory request for the Compliance container. Use this parameter to override the default value. |
||
|
The CPU request for the Compliance container. Use this parameter to override the default value. |
||
|
The memory limit for the Compliance container. Use this parameter to override the default value. |
||
|
The CPU limit for the Compliance container. Use this parameter to override the default value. |
||
|
The internal service-to-service TLS certificate that Collector uses. |
||
|
The internal service-to-service TLS certificate key that Collector uses. |
||
|
This setting controls whether Kubernetes is configured to contact Red Hat Advanced Cluster Security for Kubernetes with |
||
|
When you set this parameter as |
||
|
This setting controls whether the cluster is configured to contact Red Hat Advanced Cluster Security for Kubernetes with |
||
|
This setting controls whether Red Hat Advanced Cluster Security for Kubernetes evaluates policies; if it is disabled, all AdmissionReview requests are automatically accepted. |
||
|
This setting controls the behavior of the admission control service.
You must specify |
||
|
If you set this option to |
||
|
Set it to |
||
|
Use this parameter to specify the maximum number of seconds RHACS must wait for an admission review before marking it as fail open. If the admission webhook does not receive information that it is requesting before the end of the timeout period, it fails, but in fail open status, it still allows the operation to succeed. For example, the admission controller would allow a deployment to be created even if a scan had timed out and RHACS could not determine if the deployment violated a policy. Beginning in release 4.5, Red Hat reduced the default timeout setting for the RHACS admission controller webhooks from 20 seconds to 10 seconds, resulting in an effective timeout of 12 seconds within the |
||
|
The memory request for the Admission Control container. Use this parameter to override the default value. |
||
|
The CPU request for the Admission Control container. Use this parameter to override the default value. |
||
|
The memory limit for the Admission Control container. Use this parameter to override the default value. |
||
|
The CPU limit for the Admission Control container. Use this parameter to override the default value. |
||
|
Specify a node selector label as |
||
|
If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Admission Control. This parameter is mainly used for infrastructure nodes. |
||
|
The internal service-to-service TLS certificate that Admission Control uses. |
||
|
The internal service-to-service TLS certificate key that Admission Control uses. |
||
|
Use this parameter to override the default |
||
|
If you specify |
||
|
Specify |
||
|
Specify |
||
|
Deprecated. Specify |
||
|
Resource specification for Sensor. |
||
|
Resource specification for Admission controller. |
||
|
Resource specification for Collector. |
||
|
Resource specification for Collector’s Compliance container. |
||
|
If you set this option to |
||
|
If you set this option to |
||
|
If you set this option to |
||
|
If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Scanner DB. |
||
|
Resource specification for Collector’s Compliance container. |
||
|
Setting this parameter allows you to modify the scanner log level. Use this option only for troubleshooting purposes. |
||
|
If you set this option to |
||
|
The minimum number of replicas for autoscaling. Defaults to 2. |
||
|
The maximum number of replicas for autoscaling. Defaults to 5. |
||
|
Specify a node selector label as |
||
|
If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Scanner. |
||
|
Specify a node selector label as |
||
|
If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Scanner DB. |
||
|
The memory request for the Scanner container. Use this parameter to override the default value. |
||
|
The CPU request for the Scanner container. Use this parameter to override the default value. |
||
|
The memory limit for the Scanner container. Use this parameter to override the default value. |
||
|
The CPU limit for the Scanner container. Use this parameter to override the default value. |
||
|
The memory request for the Scanner DB container. Use this parameter to override the default value. |
||
|
The CPU request for the Scanner DB container. Use this parameter to override the default value. |
||
|
The memory limit for the Scanner DB container. Use this parameter to override the default value. |
||
|
The CPU limit for the Scanner DB container. Use this parameter to override the default value. |
||
|
If you set this option to |
||
|
To provide security at the network level, RHACS creates default
|
You can specify environment variables for Sensor and Admission controller in the following format:
customize:
envVars:
ENV_VAR1: "value1"
ENV_VAR2: "value2"
The customize
setting allows you to specify custom Kubernetes metadata (labels and annotations) for all objects created by this Helm chart and additional pod labels, pod annotations, and container environment variables for workloads.
The configuration is hierarchical, in the sense that metadata defined at a more generic scope (for example, for all objects) can be overridden by metadata defined at a narrower scope (for example, only for the Sensor deployment).
After you configure the values-public.yaml
and values-private.yaml
files, install the secured-cluster-services
Helm chart to deploy the following per-cluster and per-node components:
Sensor
Admission controller
Collector
Scanner: optional for secured clusters when the StackRox Scanner is installed
Scanner DB: optional for secured clusters when the StackRox Scanner is installed
Scanner V4 Indexer and Scanner V4 DB: optional for secured clusters when Scanner V4 is installed
You must have generated an RHACS init bundle for your cluster.
You must have access to the Red Hat Container Registry and a pull secret for authentication. For information about downloading images from registry.redhat.io
, see Red Hat Container Registry Authentication.
You must have the address and the port number that you are exposing the Central service on.
Run the following command:
$ helm install -n stackrox \
--create-namespace stackrox-secured-cluster-services rhacs/secured-cluster-services \
-f <name_of_cluster_init_bundle.yaml> \
-f <path_to_values_public.yaml> -f <path_to_values_private.yaml> \(1)
--set imagePullSecrets.username=<username> \(2)
--set imagePullSecrets.password=<password> (3)
1 | Use the -f option to specify the paths for your YAML configuration files. |
2 | Include the user name for your pull secret for Red Hat Container Registry authentication. |
3 | Include the password for your pull secret for Red Hat Container Registry authentication. |
To deploy
|
You can make changes to any configuration options after you have deployed the secured-cluster-services
Helm chart.
When using the helm upgrade
command to make changes, the following guidelines and requirements apply:
You can also specify configuration values using the --set
or --set-file
parameters.
However, these options are not saved, and you must manually specify all the options again whenever you make changes.
Some changes, such as enabling a new component like Scanner V4, require new certificates to be issued for the component. Therefore, you must provide a CA when making these changes.
If the CA was generated by the Helm chart during the initial installation, you must retrieve these automatically generated values from the cluster and provide them to the helm upgrade
command. The post-installation notes of the central-services
Helm chart include a command for retrieving the automatically generated values.
If the CA was generated outside of the Helm chart and provided during the installation of the central-services
chart, then you must perform that action again when using the helm upgrade
command, for example, by using the --reuse-values
flag with the helm upgrade
command.
Update the values-public.yaml
and values-private.yaml
configuration files with new values.
Run the helm upgrade
command and specify the configuration files using the -f
option:
$ helm upgrade -n stackrox \
stackrox-secured-cluster-services rhacs/secured-cluster-services \
--reuse-values \(1)
-f <path_to_values_public.yaml> \
-f <path_to_values_private.yaml>
1 | If you have modified values that are not included in the values_public.yaml and values_private.yaml files, include the --reuse-values parameter. |
To install RHACS on secured clusters by using the CLI, perform the following steps:
Install the roxctl
CLI
Install Sensor.
You must first download the binary. You can install roxctl
on Linux, Windows, or macOS.
You can install the roxctl
CLI binary on Linux by using the following procedure.
|
Determine the roxctl
architecture for the target operating system:
$ arch="$(uname -m | sed "s/x86_64//")"; arch="${arch:+-$arch}"
Download the roxctl
CLI:
$ curl -L -f -o roxctl "https://mirror.openshift.com/pub/rhacs/assets/4.5.4/bin/Linux/roxctl${arch}"
Make the roxctl
binary executable:
$ chmod +x roxctl
Place the roxctl
binary in a directory that is on your PATH
:
To check your PATH
, execute the following command:
$ echo $PATH
Verify the roxctl
version you have installed:
$ roxctl version
You can install the roxctl
CLI binary on macOS by using the following procedure.
|
Determine the roxctl
architecture for the target operating system:
$ arch="$(uname -m | sed "s/x86_64//")"; arch="${arch:+-$arch}"
Download the roxctl
CLI:
$ curl -L -f -o roxctl "https://mirror.openshift.com/pub/rhacs/assets/4.5.4/bin/Darwin/roxctl${arch}"
Remove all extended attributes from the binary:
$ xattr -c roxctl
Make the roxctl
binary executable:
$ chmod +x roxctl
Place the roxctl
binary in a directory that is on your PATH
:
To check your PATH
, execute the following command:
$ echo $PATH
Verify the roxctl
version you have installed:
$ roxctl version
You can install the roxctl
CLI binary on Windows by using the following procedure.
|
Download the roxctl
CLI:
$ curl -f -O https://mirror.openshift.com/pub/rhacs/assets/4.5.4/bin/Windows/roxctl.exe
Verify the roxctl
version you have installed:
$ roxctl version
To monitor a cluster, you must deploy Sensor. You must deploy Sensor into each cluster that you want to monitor. This installation method is also called the manifest installation method.
To perform an installation by using the manifest installation method, follow only one of the following procedures:
Use the RHACS web portal to download the cluster bundle, and then extract and run the sensor script.
Use the roxctl
CLI to generate the required sensor configuration for your OpenShift Container Platform cluster and associate it with your Central instance.
You must have already installed Central services, or you can access Central services by selecting your ACS instance on Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service).
On your secured cluster, in the RHACS portal, go to Platform Configuration → Clusters.
Select Secure a cluster → Legacy installation method.
Specify a name for the cluster.
Provide appropriate values for the fields based on where you are deploying the Sensor.
If you are deploying Sensor in the same cluster, accept the default values for all the fields.
If you are deploying into a different cluster, replace central.stackrox.svc:443
with a load balancer, node port, or other address, including the port number, that is accessible from the other cluster.
If you are using a non-gRPC capable load balancer, such as HAProxy, AWS Application Load Balancer (ALB), or AWS Elastic Load Balancing (ELB), use the WebSocket Secure (wss
) protocol. To use wss
:
Prefix the address with wss://
.
Add the port number after the address, for example, wss://stackrox-central.example.com:443
.
Click Next to continue with the Sensor setup.
Click Download YAML File and Keys to download the cluster bundle (zip archive).
The cluster bundle zip archive includes unique configurations and keys for each cluster. Do not reuse the same files in another cluster. |
From a system that has access to the monitored cluster, extract and run the sensor
script from the cluster bundle:
$ unzip -d sensor sensor-<cluster_name>.zip
$ ./sensor/sensor.sh
If you get a warning that you do not have the required permissions to deploy Sensor, follow the on-screen instructions, or contact your cluster administrator for help.
After Sensor is deployed, it contacts Central and provides cluster information.
Generate the required sensor configuration for your OpenShift Container Platform cluster and associate it with your Central instance by running the following command:
$ roxctl sensor generate openshift --openshift-version <ocp_version> --name <cluster_name> --central "$ROX_ENDPOINT" (1)
1 | For the --openshift-version option, specify the major OpenShift Container Platform version number for your cluster. For example, specify 3 for OpenShift Container Platform version 3.x and specify 4 for OpenShift Container Platform version 4.x . |
From a system that has access to the monitored cluster, extract and run the sensor
script from the cluster bundle:
$ unzip -d sensor sensor-<cluster_name>.zip
$ ./sensor/sensor.sh
If you get a warning that you do not have the required permissions to deploy Sensor, follow the on-screen instructions, or contact your cluster administrator for help.
After Sensor is deployed, it contacts Central and provides cluster information.
Return to the RHACS portal and check if the deployment is successful. If successful, when viewing your list of clusters in Platform Configuration → Clusters, the cluster status displays a green checkmark and a Healthy status. If you do not see a green checkmark, use the following command to check for problems:
On Kubernetes, enter the following command:
$ kubectl get pod -n stackrox -w
Click Finish to close the window.
After installation, Sensor starts reporting security information to RHACS and the RHACS portal dashboard begins showing deployments, images, and policy violations from the cluster on which you have installed the Sensor.