×

Installing RHACS on secured clusters by using the Operator

Installing secured cluster services

You can install Secured Cluster services on your clusters by using the Operator, which creates the SecuredCluster custom resource. You must install the Secured Cluster services on every cluster in your environment that you want to monitor.

When you install Red Hat Advanced Cluster Security for Kubernetes:

  • If you are installing RHACS for the first time, you must first install the Central custom resource because the SecuredCluster custom resource installation is dependent on certificates that Central generates.

  • Do not install SecuredCluster in projects whose names start with kube, openshift, or redhat, or in the istio-system project.

  • If you are installing RHACS SecuredCluster custom resource on a cluster that also hosts Central, ensure that you install it in the same namespace as Central.

  • If you are installing Red Hat Advanced Cluster Security for Kubernetes SecuredCluster custom resource on a cluster that does not host Central, Red Hat recommends that you install the Red Hat Advanced Cluster Security for Kubernetes SecuredCluster custom resource in its own project and not in the project in which you have installed the Red Hat Advanced Cluster Security for Kubernetes Operator.

Prerequisites
  • If you are using OpenShift Container Platform, you must install version 4.11 or later.

  • You have installed the RHACS Operator on the cluster that you want to secure, called the secured cluster.

  • You have generated an init bundle and applied it to the cluster.

Procedure
  1. On the OpenShift Container Platform web console for the secured cluster, go to the OperatorsInstalled Operators page.

  2. Click the RHACS Operator.

  3. If you have installed the Operator in the recommended namespace, OpenShift Container Platform lists the project as rhacs-operator. Select Project: rhacs-operatorCreate project.

    • If you installed the Operator in a different namespace, OpenShift Container Platform lists the name of that namespace instead of rhacs-operator.

  4. Enter the new project name (for example, stackrox), and click Create. Red Hat recommends that you use stackrox as the project name.

  5. Click Secured Cluster from the central navigation menu in the Operator details page.

  6. Click Create SecuredCluster.

  7. Select one of the following options in the Configure via field:

    • Form view: Use this option if you want to use the on-screen fields to configure the secured cluster and do not need to change any other fields.

    • YAML view: Use this view to set up the secured cluster by using the YAML file. The YAML file is displayed in the window and you can edit fields in it. If you select this option, when you are finished editing the file, click Create.

  8. If you are using Form view, enter the new project name by accepting or editing the default name. The default value is stackrox-secured-cluster-services.

  9. Optional: Add any labels for the cluster.

  10. Enter a unique name for your SecuredCluster custom resource.

  11. For Central Endpoint, enter the address of your Central instance. For example, if Central is available at https://central.example.com, then specify the central endpoint as central.example.com.

    • Use the default value of central.stackrox.svc:443 only if you are installing secured cluster services in the same cluster where Central is installed.

    • Do not use the default value when you are configuring multiple clusters. Instead, use the hostname when configuring the Central Endpoint value for each cluster.

  12. For the remaining fields, accept the default values or configure custom values if needed. For example, you might need to configure TLS if you are using custom certificates or untrusted CAs. See "Configuring Secured Cluster services options for RHACS using the Operator" for more information.

  13. Click Create.

  14. After a brief pause, the SecuredClusters page displays the status of stackrox-secured-cluster-services. You might see the following conditions:

    • Conditions: Deployed, Initialized: The secured cluster services have been installed and the secured cluster is communicating with Central.

    • Conditions: Initialized, Irreconcilable: The secured cluster is not communicating with Central. Make sure that you applied the init bundle you created in the RHACS web portal to the secured cluster.

Next steps
  1. Configure additional secured cluster settings (optional).

  2. Verify installation.

Installing RHACS on secured clusters by using Helm charts

You can install RHACS on secured clusters by using Helm charts with no customization, using the default values, or with customizations of configuration parameters.

Installing RHACS on secured clusters by using Helm charts without customizations

Adding the Helm chart repository

Procedure
  • Add the RHACS charts repository.

    $ helm repo add rhacs https://mirror.openshift.com/pub/rhacs/charts/

The Helm repository for Red Hat Advanced Cluster Security for Kubernetes includes Helm charts for installing different components, including:

  • Central services Helm chart (central-services) for installing the centralized components (Central and Scanner).

    You deploy centralized components only once and you can monitor multiple separate clusters by using the same installation.

  • Secured Cluster Services Helm chart (secured-cluster-services) for installing the per-cluster and per-node components (Sensor, Admission Controller, Collector, and Scanner-slim).

    Deploy the per-cluster components into each cluster that you want to monitor and deploy the per-node components in all nodes that you want to monitor.

Verification
  • Run the following command to verify the added chart repository:

    $ helm search repo -l rhacs/

Installing the secured-cluster-services Helm chart without customization

Use the following instructions to install the secured-cluster-services Helm chart to deploy the per-cluster and per-node components (Sensor, Admission controller, Collector, and Scanner-slim).

Prerequisites
  • You must have generated an RHACS init bundle for your cluster.

  • You must have access to the Red Hat Container Registry and a pull secret for authentication. For information about downloading images from registry.redhat.io, see Red Hat Container Registry Authentication.

  • You must have the address that you are exposing the Central service on.

Procedure
  • Run the following command on OpenShift Container Platform clusters:

    $ helm install -n stackrox --create-namespace \
        stackrox-secured-cluster-services rhacs/secured-cluster-services \
        -f <path_to_cluster_init_bundle.yaml> \(1)
        -f <path_to_pull_secret.yaml> \(2)
        --set clusterName=<name_of_the_secured_cluster> \
        --set centralEndpoint=<endpoint_of_central_service> (3)
        --set scanner.disable=false (4)
    
    1 Use the -f option to specify the path for the init bundle.
    2 Use the -f option to specify the path for the pull secret for Red Hat Container Registry authentication.
    3 Specify the address and port number for Central. For example, acs.domain.com:443.
    4 Set the value of the scanner.disable parameter to false, which means that Scanner-slim will be enabled during the installation. In Kubernetes, the secured cluster services now include Scanner-slim as an optional component.

Configuring the secured-cluster-services Helm chart with customizations

This section describes Helm chart configuration parameters that you can use with the helm install and helm upgrade commands. You can specify these parameters by using the --set option or by creating YAML configuration files.

Create the following files for configuring the Helm chart for installing Red Hat Advanced Cluster Security for Kubernetes:

  • Public configuration file values-public.yaml: Use this file to save all non-sensitive configuration options.

  • Private configuration file values-private.yaml: Use this file to save all sensitive configuration options. Ensure that you store this file securely.

While using the secured-cluster-services Helm chart, do not modify the values.yaml file that is part of the chart.

Configuration parameters

Parameter Description

clusterName

Name of your cluster.

centralEndpoint

Address of the Central endpoint. If you are using a non-gRPC capable load balancer, use the WebSocket protocol by prefixing the endpoint address with wss://. When configuring multiple clusters, use the hostname for the address. For example, central.example.com.

sensor.endpoint

Address of the Sensor endpoint including port number.

sensor.imagePullPolicy

Image pull policy for the Sensor container.

sensor.serviceTLS.cert

The internal service-to-service TLS certificate that Sensor uses.

sensor.serviceTLS.key

The internal service-to-service TLS certificate key that Sensor uses.

sensor.resources.requests.memory

The memory request for the Sensor container. Use this parameter to override the default value.

sensor.resources.requests.cpu

The CPU request for the Sensor container. Use this parameter to override the default value.

sensor.resources.limits.memory

The memory limit for the Sensor container. Use this parameter to override the default value.

sensor.resources.limits.cpu

The CPU limit for the Sensor container. Use this parameter to override the default value.

sensor.nodeSelector

Specify a node selector label as label-key: label-value to force Sensor to only schedule on nodes with the specified label.

sensor.tolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Sensor. This parameter is mainly used for infrastructure nodes.

image.main.name

The name of the main image.

image.collector.name

The name of the Collector image.

image.main.registry

The address of the registry you are using for the main image.

image.collector.registry

The address of the registry you are using for the Collector image.

image.scanner.registry

The address of the registry you are using for the Scanner image.

image.scannerDb.registry

The address of the registry you are using for the Scanner DB image.

image.scannerV4.registry

The address of the registry you are using for the Scanner V4 image.

image.scannerV4DB.registry

The address of the registry you are using for the Scanner V4 DB image.

image.main.pullPolicy

Image pull policy for main images.

image.collector.pullPolicy

Image pull policy for the Collector images.

image.main.tag

Tag of main image to use.

image.collector.tag

Tag of collector image to use.

collector.collectionMethod

Either CORE_BPF or NO_COLLECTION.

collector.imagePullPolicy

Image pull policy for the Collector container.

collector.complianceImagePullPolicy

Image pull policy for the Compliance container.

collector.disableTaintTolerations

If you specify false, tolerations are applied to Collector, and the collector pods can schedule onto all nodes with taints. If you specify it as true, no tolerations are applied, and the collector pods are not scheduled onto nodes with taints.

collector.resources.requests.memory

The memory request for the Collector container. Use this parameter to override the default value.

collector.resources.requests.cpu

The CPU request for the Collector container. Use this parameter to override the default value.

collector.resources.limits.memory

The memory limit for the Collector container. Use this parameter to override the default value.

collector.resources.limits.cpu

The CPU limit for the Collector container. Use this parameter to override the default value.

collector.complianceResources.requests.memory

The memory request for the Compliance container. Use this parameter to override the default value.

collector.complianceResources.requests.cpu

The CPU request for the Compliance container. Use this parameter to override the default value.

collector.complianceResources.limits.memory

The memory limit for the Compliance container. Use this parameter to override the default value.

collector.complianceResources.limits.cpu

The CPU limit for the Compliance container. Use this parameter to override the default value.

collector.serviceTLS.cert

The internal service-to-service TLS certificate that Collector uses.

collector.serviceTLS.key

The internal service-to-service TLS certificate key that Collector uses.

admissionControl.listenOnCreates

This setting controls whether Kubernetes is configured to contact Red Hat Advanced Cluster Security for Kubernetes with AdmissionReview requests for workload creation events.

admissionControl.listenOnUpdates

When you set this parameter as false, Red Hat Advanced Cluster Security for Kubernetes creates the ValidatingWebhookConfiguration in a way that causes the Kubernetes API server not to send object update events. Since the volume of object updates is usually higher than the object creates, leaving this as false limits the load on the admission control service and decreases the chances of a malfunctioning admission control service.

admissionControl.listenOnEvents

This setting controls whether the cluster is configured to contact Red Hat Advanced Cluster Security for Kubernetes with AdmissionReview requests for Kubernetes exec and portforward events. RHACS does not support this feature on OpenShift Container Platform 3.11.

admissionControl.dynamic.enforceOnCreates

This setting controls whether Red Hat Advanced Cluster Security for Kubernetes evaluates policies; if it is disabled, all AdmissionReview requests are automatically accepted.

admissionControl.dynamic.enforceOnUpdates

This setting controls the behavior of the admission control service. You must specify listenOnUpdates as true for this to work.

admissionControl.dynamic.scanInline

If you set this option to true, the admission control service requests an image scan before making an admission decision. Since image scans take several seconds, enable this option only if you can ensure that all images used in your cluster are scanned before deployment (for example, by a CI integration during image build). This option corresponds to the Contact image scanners option in the RHACS portal.

admissionControl.dynamic.disableBypass

Set it to true to disable bypassing the Admission controller.

admissionControl.dynamic.timeout

Use this parameter to specify the maximum number of seconds RHACS must wait for an admission review before marking it as fail open. If the admission webhook does not receive information that it is requesting before the end of the timeout period, it fails, but in fail open status, it still allows the operation to succeed. For example, the admission controller would allow a deployment to be created even if a scan had timed out and RHACS could not determine if the deployment violated a policy. Beginning in release 4.5, Red Hat reduced the default timeout setting for the RHACS admission controller webhooks from 20 seconds to 10 seconds, resulting in an effective timeout of 12 seconds within the ValidatingWebhookConfiguration. This change does not negatively affect OpenShift Container Platform users because OpenShift Container Platform caps the timeout at 13 seconds.

admissionControl.resources.requests.memory

The memory request for the Admission Control container. Use this parameter to override the default value.

admissionControl.resources.requests.cpu

The CPU request for the Admission Control container. Use this parameter to override the default value.

admissionControl.resources.limits.memory

The memory limit for the Admission Control container. Use this parameter to override the default value.

admissionControl.resources.limits.cpu

The CPU limit for the Admission Control container. Use this parameter to override the default value.

admissionControl.nodeSelector

Specify a node selector label as label-key: label-value to force Admission Control to only schedule on nodes with the specified label.

admissionControl.tolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Admission Control. This parameter is mainly used for infrastructure nodes.

admissionControl.serviceTLS.cert

The internal service-to-service TLS certificate that Admission Control uses.

admissionControl.serviceTLS.key

The internal service-to-service TLS certificate key that Admission Control uses.

registryOverride

Use this parameter to override the default docker.io registry. Specify the name of your registry if you are using some other registry.

collector.disableTaintTolerations

If you specify false, tolerations are applied to Collector, and the Collector pods can schedule onto all nodes with taints. If you specify it as true, no tolerations are applied, and the Collector pods are not scheduled onto nodes with taints.

createUpgraderServiceAccount

Specify true to create the sensor-upgrader account. By default, Red Hat Advanced Cluster Security for Kubernetes creates a service account called sensor-upgrader in each secured cluster. This account is highly privileged but is only used during upgrades. If you do not create this account, you must complete future upgrades manually if the Sensor does not have enough permissions.

createSecrets

Specify false to skip the orchestrator secret creation for the Sensor, Collector, and Admission controller.

collector.slimMode

Deprecated. Specify true if you want to use a slim Collector image for deploying Collector.

sensor.resources

Resource specification for Sensor.

admissionControl.resources

Resource specification for Admission controller.

collector.resources

Resource specification for Collector.

collector.complianceResources

Resource specification for Collector’s Compliance container.

exposeMonitoring

If you set this option to true, Red Hat Advanced Cluster Security for Kubernetes exposes Prometheus metrics endpoints on port number 9090 for the Sensor, Collector, and the Admission controller.

auditLogs.disableCollection

If you set this option to true, Red Hat Advanced Cluster Security for Kubernetes disables the audit log detection features used to detect access and modifications to configuration maps and secrets.

scanner.disable

If you set this option to false, Red Hat Advanced Cluster Security for Kubernetes deploys a Scanner-slim and Scanner DB in the secured cluster to allow scanning images on the integrated OpenShift image registry. Enabling Scanner-slim is supported on OpenShift Container Platform and Kubernetes secured clusters. Defaults to true.

scanner.dbTolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Scanner DB.

scanner.replicas

Resource specification for Collector’s Compliance container.

scanner.logLevel

Setting this parameter allows you to modify the scanner log level. Use this option only for troubleshooting purposes.

scanner.autoscaling.disable

If you set this option to true, Red Hat Advanced Cluster Security for Kubernetes disables autoscaling on the Scanner deployment.

scanner.autoscaling.minReplicas

The minimum number of replicas for autoscaling. Defaults to 2.

scanner.autoscaling.maxReplicas

The maximum number of replicas for autoscaling. Defaults to 5.

scanner.nodeSelector

Specify a node selector label as label-key: label-value to force Scanner to only schedule on nodes with the specified label.

scanner.tolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Scanner.

scanner.dbNodeSelector

Specify a node selector label as label-key: label-value to force Scanner DB to only schedule on nodes with the specified label.

scanner.dbTolerations

If the node selector selects tainted nodes, use this parameter to specify a taint toleration key, value, and effect for Scanner DB.

scanner.resources.requests.memory

The memory request for the Scanner container. Use this parameter to override the default value.

scanner.resources.requests.cpu

The CPU request for the Scanner container. Use this parameter to override the default value.

scanner.resources.limits.memory

The memory limit for the Scanner container. Use this parameter to override the default value.

scanner.resources.limits.cpu

The CPU limit for the Scanner container. Use this parameter to override the default value.

scanner.dbResources.requests.memory

The memory request for the Scanner DB container. Use this parameter to override the default value.

scanner.dbResources.requests.cpu

The CPU request for the Scanner DB container. Use this parameter to override the default value.

scanner.dbResources.limits.memory

The memory limit for the Scanner DB container. Use this parameter to override the default value.

scanner.dbResources.limits.cpu

The CPU limit for the Scanner DB container. Use this parameter to override the default value.

monitoring.openshift.enabled

If you set this option to false, Red Hat Advanced Cluster Security for Kubernetes will not set up Red Hat OpenShift monitoring. Defaults to true on Red Hat OpenShift 4.

network.enableNetworkPolicies

To provide security at the network level, RHACS creates default NetworkPolicy resources in the namespace where secured cluster resources are installed. These network policies allow ingress to specific components on specific ports. If you do not want RHACS to create these policies, set this parameter to False. This is a Boolean value. The default value is True, which means the default policies are automatically created.

Disabling creation of default network policies can break communication between RHACS components. If you disable creation of default policies, you must create your own network policies to allow this communication.

Environment variables

You can specify environment variables for Sensor and Admission controller in the following format:

customize:
  envVars:
    ENV_VAR1: "value1"
    ENV_VAR2: "value2"

The customize setting allows you to specify custom Kubernetes metadata (labels and annotations) for all objects created by this Helm chart and additional pod labels, pod annotations, and container environment variables for workloads.

The configuration is hierarchical, in the sense that metadata defined at a more generic scope (for example, for all objects) can be overridden by metadata defined at a narrower scope (for example, only for the Sensor deployment).

Installing the secured-cluster-services Helm chart with customizations

After you configure the values-public.yaml and values-private.yaml files, install the secured-cluster-services Helm chart to deploy the following per-cluster and per-node components:

  • Sensor

  • Admission controller

  • Collector

  • Scanner: optional for secured clusters when the StackRox Scanner is installed

  • Scanner DB: optional for secured clusters when the StackRox Scanner is installed

  • Scanner V4 Indexer and Scanner V4 DB: optional for secured clusters when Scanner V4 is installed

Prerequisites
  • You must have generated an RHACS init bundle for your cluster.

  • You must have access to the Red Hat Container Registry and a pull secret for authentication. For information about downloading images from registry.redhat.io, see Red Hat Container Registry Authentication.

  • You must have the address and the port number that you are exposing the Central service on.

Procedure
  • Run the following command:

    $ helm install -n stackrox \
      --create-namespace stackrox-secured-cluster-services rhacs/secured-cluster-services \
      -f <name_of_cluster_init_bundle.yaml> \
      -f <path_to_values_public.yaml> -f <path_to_values_private.yaml> \(1)
      --set imagePullSecrets.username=<username> \(2)
      --set imagePullSecrets.password=<password> (3)
    1 Use the -f option to specify the paths for your YAML configuration files.
    2 Include the user name for your pull secret for Red Hat Container Registry authentication.
    3 Include the password for your pull secret for Red Hat Container Registry authentication.

To deploy secured-cluster-services Helm chart by using a continuous integration (CI) system, pass the init bundle YAML file as an environment variable to the helm install command:

$ helm install ... -f <(echo "$INIT_BUNDLE_YAML_SECRET") (1)
1 If you are using base64 encoded variables, use the helm install …​ -f <(echo "$INIT_BUNDLE_YAML_SECRET" | base64 --decode) command instead.

Changing configuration options after deploying the secured-cluster-services Helm chart

You can make changes to any configuration options after you have deployed the secured-cluster-services Helm chart.

When using the helm upgrade command to make changes, the following guidelines and requirements apply:

  • You can also specify configuration values using the --set or --set-file parameters. However, these options are not saved, and you must manually specify all the options again whenever you make changes.

  • Some changes, such as enabling a new component like Scanner V4, require new certificates to be issued for the component. Therefore, you must provide a CA when making these changes.

    • If the CA was generated by the Helm chart during the initial installation, you must retrieve these automatically generated values from the cluster and provide them to the helm upgrade command. The post-installation notes of the central-services Helm chart include a command for retrieving the automatically generated values.

    • If the CA was generated outside of the Helm chart and provided during the installation of the central-services chart, then you must perform that action again when using the helm upgrade command, for example, by using the --reuse-values flag with the helm upgrade command.

Procedure
  1. Update the values-public.yaml and values-private.yaml configuration files with new values.

  2. Run the helm upgrade command and specify the configuration files using the -f option:

    $ helm upgrade -n stackrox \
      stackrox-secured-cluster-services rhacs/secured-cluster-services \
      --reuse-values \(1)
      -f <path_to_values_public.yaml> \
      -f <path_to_values_private.yaml>
    1 If you have modified values that are not included in the values_public.yaml and values_private.yaml files, include the --reuse-values parameter.

Installing RHACS on secured clusters by using the roxctl CLI

This method is also referred to as the manifest installation method.

Prerequisites
  • If you plan to use the roxctl CLI command to generate the files used by the sensor installation script, you have installed the roxctl CLI.

  • You have generated the files that will be used by the sensor installation script.

Procedure
  • On the OpenShift Container Platform secured cluster, deploy the Sensor component by running the sensor installation script.

Installing the roxctl CLI

You must first download the binary. You can install roxctl on Linux, Windows, or macOS.

Installing the roxctl CLI on Linux

You can install the roxctl CLI binary on Linux by using the following procedure.

roxctl CLI for Linux is available for amd64, arm64, ppc64le, and s390x architectures.

Procedure
  1. Determine the roxctl architecture for the target operating system:

    $ arch="$(uname -m | sed "s/x86_64//")"; arch="${arch:+-$arch}"
  2. Download the roxctl CLI:

    $ curl -L -f -o roxctl "https://mirror.openshift.com/pub/rhacs/assets/4.5.4/bin/Linux/roxctl${arch}"
  3. Make the roxctl binary executable:

    $ chmod +x roxctl
  4. Place the roxctl binary in a directory that is on your PATH:

    To check your PATH, execute the following command:

    $ echo $PATH
Verification
  • Verify the roxctl version you have installed:

    $ roxctl version

Installing the roxctl CLI on macOS

You can install the roxctl CLI binary on macOS by using the following procedure.

roxctl CLI for macOS is available for amd64 and arm64 architectures.

Procedure
  1. Determine the roxctl architecture for the target operating system:

    $ arch="$(uname -m | sed "s/x86_64//")"; arch="${arch:+-$arch}"
  2. Download the roxctl CLI:

    $ curl -L -f -o roxctl "https://mirror.openshift.com/pub/rhacs/assets/4.5.4/bin/Darwin/roxctl${arch}"
  3. Remove all extended attributes from the binary:

    $ xattr -c roxctl
  4. Make the roxctl binary executable:

    $ chmod +x roxctl
  5. Place the roxctl binary in a directory that is on your PATH:

    To check your PATH, execute the following command:

    $ echo $PATH
Verification
  • Verify the roxctl version you have installed:

    $ roxctl version

Installing the roxctl CLI on Windows

You can install the roxctl CLI binary on Windows by using the following procedure.

roxctl CLI for Windows is available for the amd64 architecture.

Procedure
  • Download the roxctl CLI:

    $ curl -f -O https://mirror.openshift.com/pub/rhacs/assets/4.5.4/bin/Windows/roxctl.exe
Verification
  • Verify the roxctl version you have installed:

    $ roxctl version

Installing Sensor

To monitor a cluster, you must deploy Sensor. You must deploy Sensor into each cluster that you want to monitor. This installation method is also called the manifest installation method.

To perform an installation by using the manifest installation method, follow only one of the following procedures:

  • Use the RHACS web portal to download the cluster bundle, and then extract and run the sensor script.

  • Use the roxctl CLI to generate the required sensor configuration for your OpenShift Container Platform cluster and associate it with your Central instance.

Prerequisites
  • You must have already installed Central services, or you can access Central services by selecting your ACS instance on Red Hat Advanced Cluster Security Cloud Service (RHACS Cloud Service).

Manifest installation method by using the web portal

Procedure
  1. On your secured cluster, in the RHACS portal, go to Platform ConfigurationClusters.

  2. Select Secure a clusterLegacy installation method.

  3. Specify a name for the cluster.

  4. Provide appropriate values for the fields based on where you are deploying the Sensor.

    • If you are deploying Sensor in the same cluster, accept the default values for all the fields.

    • If you are deploying into a different cluster, replace central.stackrox.svc:443 with a load balancer, node port, or other address, including the port number, that is accessible from the other cluster.

    • If you are using a non-gRPC capable load balancer, such as HAProxy, AWS Application Load Balancer (ALB), or AWS Elastic Load Balancing (ELB), use the WebSocket Secure (wss) protocol. To use wss:

      • Prefix the address with wss://.

      • Add the port number after the address, for example, wss://stackrox-central.example.com:443.

  5. Click Next to continue with the Sensor setup.

  6. Click Download YAML File and Keys to download the cluster bundle (zip archive).

    The cluster bundle zip archive includes unique configurations and keys for each cluster. Do not reuse the same files in another cluster.

  7. From a system that has access to the monitored cluster, extract and run the sensor script from the cluster bundle:

    $ unzip -d sensor sensor-<cluster_name>.zip
    $ ./sensor/sensor.sh

    If you get a warning that you do not have the required permissions to deploy Sensor, follow the on-screen instructions, or contact your cluster administrator for help.

After Sensor is deployed, it contacts Central and provides cluster information.

Manifest installation by using the roxctl CLI

Procedure
  1. Generate the required sensor configuration for your OpenShift Container Platform cluster and associate it with your Central instance by running the following command:

    $ roxctl sensor generate openshift --openshift-version <ocp_version> --name <cluster_name> --central "$ROX_ENDPOINT" (1)
    1 For the --openshift-version option, specify the major OpenShift Container Platform version number for your cluster. For example, specify 3 for OpenShift Container Platform version 3.x and specify 4 for OpenShift Container Platform version 4.x.
  2. From a system that has access to the monitored cluster, extract and run the sensor script from the cluster bundle:

    $ unzip -d sensor sensor-<cluster_name>.zip
    $ ./sensor/sensor.sh

    If you get a warning that you do not have the required permissions to deploy Sensor, follow the on-screen instructions, or contact your cluster administrator for help.

After Sensor is deployed, it contacts Central and provides cluster information.

Verification
  1. Return to the RHACS portal and check if the deployment is successful. If successful, when viewing your list of clusters in Platform ConfigurationClusters, the cluster status displays a green checkmark and a Healthy status. If you do not see a green checkmark, use the following command to check for problems:

    • On OpenShift Container Platform, enter the following command:

      $ oc get pod -n stackrox -w
    • On Kubernetes, enter the following command:

      $ kubectl get pod -n stackrox -w
  2. Click Finish to close the window.

After installation, Sensor starts reporting security information to RHACS and the RHACS portal dashboard begins showing deployments, images, and policy violations from the cluster on which you have installed the Sensor.